Melis Tuncer, Muhammed Erkan Karabekmez, Filiz Kisaayak Collak
{"title":"Multi-Omics Analysis of Primary Prostate Cancer Datasets Reveals Novel Biomarkers.","authors":"Melis Tuncer, Muhammed Erkan Karabekmez, Filiz Kisaayak Collak","doi":"10.1007/s10528-024-10899-y","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) ranks second in cancer-related deaths in men. Current screenings used in the diagnosis are not sufficient enough in the early stages therefore, more diagnostic biomarker studies are needed. We performed a meta-analysis on the biomarker potential of miRNAs, mRNAs, and methylation for the early stages of PCa by searching available microarrays from the GEO dataset for PCa tissue and benign prostatic hyperplasia (BPH) or normal adjacent to PCa. Target genes of miRNAs were determined using the miRWalk and miRDB datasets. The results were visualized using network analysis. qPCR quantification of potential miRNA and genes was performed in human prostate epithelial cell line (RWPE-1) and human prostate carcinoma epithelial cell line (22RV1). Our meta-analysis of potential biomarkers for the diagnosis of PCa identified several candidates. It was shown that miR-7-5p is overexpressed. CAMKK2, TMEM97 expression were upregulated and CLIP1 expression was downregulated and these genes were shown to be targets of miR-7-5p. CAMKK2, TMEM97, and CLIP1 genes were found to be hypermethylated. Although the changes in the expression levels of miR-7-5p and CAMKK2, TMEM97, and CLIP1 in the two cell lines used in our study were not consistent with the significant expression differences observed in the meta-analysis, our meta-analysis results would be promising in human prostate tissue or different human tumor cell line studies. This highlights the importance of our meta-analysis results in prostate cancer biomarker research, given the difficulty of experimental validation of our large-scale data meta-analysis results using a specific cell line.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10899-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer (PCa) ranks second in cancer-related deaths in men. Current screenings used in the diagnosis are not sufficient enough in the early stages therefore, more diagnostic biomarker studies are needed. We performed a meta-analysis on the biomarker potential of miRNAs, mRNAs, and methylation for the early stages of PCa by searching available microarrays from the GEO dataset for PCa tissue and benign prostatic hyperplasia (BPH) or normal adjacent to PCa. Target genes of miRNAs were determined using the miRWalk and miRDB datasets. The results were visualized using network analysis. qPCR quantification of potential miRNA and genes was performed in human prostate epithelial cell line (RWPE-1) and human prostate carcinoma epithelial cell line (22RV1). Our meta-analysis of potential biomarkers for the diagnosis of PCa identified several candidates. It was shown that miR-7-5p is overexpressed. CAMKK2, TMEM97 expression were upregulated and CLIP1 expression was downregulated and these genes were shown to be targets of miR-7-5p. CAMKK2, TMEM97, and CLIP1 genes were found to be hypermethylated. Although the changes in the expression levels of miR-7-5p and CAMKK2, TMEM97, and CLIP1 in the two cell lines used in our study were not consistent with the significant expression differences observed in the meta-analysis, our meta-analysis results would be promising in human prostate tissue or different human tumor cell line studies. This highlights the importance of our meta-analysis results in prostate cancer biomarker research, given the difficulty of experimental validation of our large-scale data meta-analysis results using a specific cell line.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.