Refining Hepatocyte Models to Capture the Impact of CYP2D6*10 Utilizing a PITCh System.

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY Biological & pharmaceutical bulletin Pub Date : 2024-01-01 DOI:10.1248/bpb.b24-00202
Ryosuke Negoro, Ayu Ouchi, Sayaka Deguchi, Kazuo Takayama, Takuya Fujita
{"title":"Refining Hepatocyte Models to Capture the Impact of CYP2D6*10 Utilizing a PITCh System.","authors":"Ryosuke Negoro, Ayu Ouchi, Sayaka Deguchi, Kazuo Takayama, Takuya Fujita","doi":"10.1248/bpb.b24-00202","DOIUrl":null,"url":null,"abstract":"<p><p>CYP2D6 variants contain various single nucleotide polymorphisms as well as differing levels of metabolic activity. Among these, one of the less active variants CYP2D6*10 (100C > T) is the most prevalent mutation in East Asians, including Japanese. This mutation leads to an amino acid substitution from proline to serine, which reduces the stability of CYP2D6 and consequently decreases its metabolic activity. In this study, we used a genome editing technology called the Precise Integration into Target Chromosome (PITCh) system to stably express six drug-metabolizing enzymes (CYP3A4, POR, uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), CYP1A2, CYP2C19, CYP2C9, and CYP2D6*10) in HepG2 (CYP2D6*10 KI-HepG2) cells to examine the effect of CYP2D6*10 on drug metabolism prediction. The protein expression levels of CYP2D6 in CYP2D6*10 KI-HepG2 cells were reduced relative to those in the CYP3A4-POR-UGT1A1-CYP1A2-CYP2C19-CYP2C9-CYP2D6 knock-in-HepG2 (CYPs-UGT1A1 KI-HepG2) cells. Consistent with the CYP2D6 protein expression results, CYP2D6 metabolic activity in CYP2D6*10 KI-HepG2 cells was reduced relative to CYPs-UGT1A1 KI-HepG2 cells. We successfully generated CYP2D6*10 KI-HepG2 cells with highly expressed, functional CYP2D6*10, as well as CYP1A2, 2C9, 2C19 and 3A4. CYP2D6*10 KI-HepG2 cells could be an invaluable model for hepatic metabolism and hepatotoxicity studies in East Asians, including Japanese.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00202","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

CYP2D6 variants contain various single nucleotide polymorphisms as well as differing levels of metabolic activity. Among these, one of the less active variants CYP2D6*10 (100C > T) is the most prevalent mutation in East Asians, including Japanese. This mutation leads to an amino acid substitution from proline to serine, which reduces the stability of CYP2D6 and consequently decreases its metabolic activity. In this study, we used a genome editing technology called the Precise Integration into Target Chromosome (PITCh) system to stably express six drug-metabolizing enzymes (CYP3A4, POR, uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), CYP1A2, CYP2C19, CYP2C9, and CYP2D6*10) in HepG2 (CYP2D6*10 KI-HepG2) cells to examine the effect of CYP2D6*10 on drug metabolism prediction. The protein expression levels of CYP2D6 in CYP2D6*10 KI-HepG2 cells were reduced relative to those in the CYP3A4-POR-UGT1A1-CYP1A2-CYP2C19-CYP2C9-CYP2D6 knock-in-HepG2 (CYPs-UGT1A1 KI-HepG2) cells. Consistent with the CYP2D6 protein expression results, CYP2D6 metabolic activity in CYP2D6*10 KI-HepG2 cells was reduced relative to CYPs-UGT1A1 KI-HepG2 cells. We successfully generated CYP2D6*10 KI-HepG2 cells with highly expressed, functional CYP2D6*10, as well as CYP1A2, 2C9, 2C19 and 3A4. CYP2D6*10 KI-HepG2 cells could be an invaluable model for hepatic metabolism and hepatotoxicity studies in East Asians, including Japanese.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 PITCh 系统完善肝细胞模型以捕捉 CYP2D6*10 的影响
CYP2D6 变异包含各种单核苷酸多态性以及不同程度的代谢活性。其中,活性较低的变体之一 CYP2D6*10(100C > T)是包括日本人在内的东亚人中最常见的变异。这种突变导致氨基酸从脯氨酸替换为丝氨酸,从而降低了 CYP2D6 的稳定性,进而降低了其代谢活性。在这项研究中,我们利用一种名为 "精确整合到目标染色体(PITCh)系统 "的基因组编辑技术,稳定表达了六种药物代谢酶(CYP3A4、POR、CYP2D6*10 KI-HepG2)细胞中稳定表达六种药物代谢酶(CYP3A4、POR、二磷酸尿苷葡萄糖醛酸转移酶 1A1 (UGT1A1)、CYP1A2、CYP2C19、CYP2C9 和 CYP2D6*10),以研究 CYP2D6*10 对药物代谢预测的影响。与 CYP3A4-POR-UGT1A1-CYP1A2-CYP2C19-CYP2C9-CYP2D6 基因敲入-HepG2(CYPs-UGT1A1 KI-HepG2)细胞相比,CYP2D6 在 CYP2D6*10 KI-HepG2 细胞中的蛋白表达水平降低。与 CYP2D6 蛋白表达结果一致,CYP2D6*10 KI-HepG2 细胞中的 CYP2D6 代谢活性相对于 CYPs-UGT1A1 KI-HepG2 细胞有所降低。我们成功地生成了具有高表达、功能性 CYP2D6*10 以及 CYP1A2、2C9、2C19 和 3A4 的 CYP2D6*10 KI-HepG2 细胞。CYP2D6*10 KI-HepG2 细胞可作为研究包括日本人在内的东亚人肝脏代谢和肝毒性的宝贵模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.00%
发文量
247
审稿时长
2 months
期刊介绍: Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012. The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.
期刊最新文献
Epigallocatechin-3-gallate Alleviates Ethanol-Induced Endothelia Cells Injury Partly through Alteration of NF-κB Translocation and Activation of the Nrf2 Signaling Pathway. Fentanyl Analogs Exert Antinociceptive Effects via Sodium Channel Blockade in Mice. Detoxification and Activating Blood Circulation Decoction Promotes Reendothelialization of Damaged Blood Vessels via VEGF Signaling Pathway Activation by miRNA-126. Carbon Monoxide Alleviates Post-ischemia-reperfusion Skeletal Muscle Injury and Systemic Inflammation. Modeling Developmental Changes in Caffeine Clearance Considering Differences between Pre- and Postnatal Period.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1