{"title":"Discovery of high-expressing lncRNA-derived sORFs as potential tumor-associated antigens in hepatocellular carcinoma.","authors":"Yooeun Kim, Hongseok Ha, Kwangsoo Kim","doi":"10.1007/s13258-024-01549-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study is based on deep mining of Ribo-seq data for the identification of lncRNAs that have highly expressed sORFs in HCC. In this paper, dynamic prospects associated with sORFs acting as newly defined tumor-specific epitopes are discussed with possible improvement in strategies for tumor immunotherapy.</p><p><strong>Objective: </strong>Using ribosome profiling to identify and characterize sORFs within lncRNAs in HCC, identify potential therapeutic targets and tumor-specific epitopes applicable for immunotherapy.</p><p><strong>Methods: </strong>MetamORF performed the identification of sORFs with deep analysis of the data of ribosome profiling in lncRNAs associated with HCC. The translation efficiency in these molecules was estimated, and epitope prediction was done by pVACbind. Peptide search was done to check the presence of micropeptides translated from these identified sORFs. validated translational activity and identified potential epitopes.</p><p><strong>Results: </strong>Higher translation efficiency was noted in the case of lncRNAs associated with HCC compared to normal tissues. Of particular note is ORF3418981, which results in the highest expression and has supporting experimental evidence at the protein level. Epitope prediction identified a putative epitope at the C-terminus of ORF3418981.</p><p><strong>Conclusions: </strong>This study uncovers the as-yet-unknown potential of lncRNA-derived sORFs as sources of tumor antigens, shifting the research focus from protein-coding genes to non-coding RNAs also in the HCC context. Moreover, this study highlights the contribution of a subset of lncRNAs, especially LINC00152, to the development of tumors and modulation of the immune response by its sORFs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01549-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study is based on deep mining of Ribo-seq data for the identification of lncRNAs that have highly expressed sORFs in HCC. In this paper, dynamic prospects associated with sORFs acting as newly defined tumor-specific epitopes are discussed with possible improvement in strategies for tumor immunotherapy.
Objective: Using ribosome profiling to identify and characterize sORFs within lncRNAs in HCC, identify potential therapeutic targets and tumor-specific epitopes applicable for immunotherapy.
Methods: MetamORF performed the identification of sORFs with deep analysis of the data of ribosome profiling in lncRNAs associated with HCC. The translation efficiency in these molecules was estimated, and epitope prediction was done by pVACbind. Peptide search was done to check the presence of micropeptides translated from these identified sORFs. validated translational activity and identified potential epitopes.
Results: Higher translation efficiency was noted in the case of lncRNAs associated with HCC compared to normal tissues. Of particular note is ORF3418981, which results in the highest expression and has supporting experimental evidence at the protein level. Epitope prediction identified a putative epitope at the C-terminus of ORF3418981.
Conclusions: This study uncovers the as-yet-unknown potential of lncRNA-derived sORFs as sources of tumor antigens, shifting the research focus from protein-coding genes to non-coding RNAs also in the HCC context. Moreover, this study highlights the contribution of a subset of lncRNAs, especially LINC00152, to the development of tumors and modulation of the immune response by its sORFs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.