Impact of chitin-derived β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine on chitinase upregulation in Shewanella baltica.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY Fems Microbiology Letters Pub Date : 2024-01-09 DOI:10.1093/femsle/fnae064
Takako Hirano, Masahiro Yokoyama, Masafumi Ikejima, Haruka Shiraishi, Wataru Hakamata, Toshiyuki Nishio
{"title":"Impact of chitin-derived β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine on chitinase upregulation in Shewanella baltica.","authors":"Takako Hirano, Masahiro Yokoyama, Masafumi Ikejima, Haruka Shiraishi, Wataru Hakamata, Toshiyuki Nishio","doi":"10.1093/femsle/fnae064","DOIUrl":null,"url":null,"abstract":"<p><p>The first steps in chitin degradation in marine bacteria involve chitinase, which produces N,N'-diacetylchitobiose (GlcNAc)2 from chitin. Moreover, in Vibrio bacteria, chitinase activity is enhanced by heterodisaccharide β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) produced from (GlcNAc)2 by chitin oligosaccharide deacetylase (COD). However, the role of COD in other marine bacteria, such as Shewanella, remains unexplored. This study investigates GlcNAc-GlcN's impact on chitinase gene expression and enzyme production in S. baltica ATCC BAA-1091, drawing parallels with Vibrio parahaemolyticus RIMD2210633. Using real-time quantitative PCR, the study assesses the upregulation of chitinase gene expression in S. baltica in response to GlcNAc-GlcN, informed by COD's known ability to produce GlcNAc-GlcN from (GlcNAc)2. In Vibrio, GlcNAc-GlcN considerably upregulates chitinase gene expression. This study posits a similar regulatory mechanism in S. baltica, with preliminary investigations indicating COD's capacity to produce GlcNAc-GlcN. This study highlights the importance of exploring GlcNAc-GlcN's regulatory role in chitin metabolism across diverse marine bacteria. The potential induction of chitinase production in S. baltica suggests broader ecological implications. Further research is crucial for a comprehensive understanding of chitin utilization and regulatory pathways in marine bacterial genera.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae064","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The first steps in chitin degradation in marine bacteria involve chitinase, which produces N,N'-diacetylchitobiose (GlcNAc)2 from chitin. Moreover, in Vibrio bacteria, chitinase activity is enhanced by heterodisaccharide β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) produced from (GlcNAc)2 by chitin oligosaccharide deacetylase (COD). However, the role of COD in other marine bacteria, such as Shewanella, remains unexplored. This study investigates GlcNAc-GlcN's impact on chitinase gene expression and enzyme production in S. baltica ATCC BAA-1091, drawing parallels with Vibrio parahaemolyticus RIMD2210633. Using real-time quantitative PCR, the study assesses the upregulation of chitinase gene expression in S. baltica in response to GlcNAc-GlcN, informed by COD's known ability to produce GlcNAc-GlcN from (GlcNAc)2. In Vibrio, GlcNAc-GlcN considerably upregulates chitinase gene expression. This study posits a similar regulatory mechanism in S. baltica, with preliminary investigations indicating COD's capacity to produce GlcNAc-GlcN. This study highlights the importance of exploring GlcNAc-GlcN's regulatory role in chitin metabolism across diverse marine bacteria. The potential induction of chitinase production in S. baltica suggests broader ecological implications. Further research is crucial for a comprehensive understanding of chitin utilization and regulatory pathways in marine bacterial genera.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲壳素衍生β-N-乙酰-D-葡萄糖氨酰-(1,4)-D-葡萄糖胺对巴氏雪旺菌甲壳素酶上调的影响
海洋细菌降解几丁质的第一步涉及几丁质酶,它从几丁质中生成 N,N'-二乙酰基几丁质生物糖(GlcNAc)2。此外,在弧菌中,几丁质寡糖脱乙酰化酶(COD)从(GlcNAc)2 生成的杂二糖 β-N-乙酰基-D-葡萄糖氨酰-(1,4)-D-葡萄糖胺(GlcNAc-GlcN)会增强几丁质酶的活性。然而,COD 在其他海洋细菌(如 Shewanella)中的作用仍有待探索。本研究调查了 GlcNAc-GlcN 对巴氏雪旺菌 ATCC BAA-1091 中几丁质酶基因表达和酶生成的影响,并将其与副溶血性弧菌 RIMD2210633 进行比较。该研究利用实时定量 PCR 技术评估了巴氏梭菌在 GlcNAc-GlcN 作用下几丁质酶基因表达的上调情况,COD 从(GlcNAc)2 生成 GlcNAc-GlcN 的已知能力为该研究提供了参考。本研究假设巴氏梭菌中也有类似的调控机制,初步调查表明 COD 有能力产生 GlcNAc-GlcN。这项研究强调了探索 GlcNAc-GlcN 在不同海洋细菌甲壳素代谢中的调控作用的重要性。巴尔蒂卡氏菌可能会诱导几丁质酶的产生,这表明它具有更广泛的生态影响。进一步的研究对于全面了解海洋细菌属的几丁质利用和调控途径至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
期刊最新文献
Fumigation with dimethyl trisulfide to inhibit Aspergillus flavus growth, aflatoxin B1 production and virulence. Disruption of the pkac2 gene in Pleurotus ostreatus alters cell wall structures and enables mycelial dispersion in liquid culture. Temporal control of Staphylococcus aureus intracellular pH by sodium and potassium. DIVULSUPERBAC: an outreach project to raise awareness of antimicrobial resistance. Genome-based analysis of biosynthetic potential from antimycotic Streptomyces rochei strain A144.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1