Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update.

IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Expert Opinion on Drug Discovery Pub Date : 2024-10-01 Epub Date: 2024-08-08 DOI:10.1080/17460441.2024.2387791
Léa Lescouzères, Shunmoogum A Patten
{"title":"Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update.","authors":"Léa Lescouzères, Shunmoogum A Patten","doi":"10.1080/17460441.2024.2387791","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies.</p><p><strong>Areas covered: </strong>In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS.</p><p><strong>Expert opinion: </strong>Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2024.2387791","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies.

Areas covered: In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS.

Expert opinion: Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肌萎缩性脊髓侧索硬化症药物研发的前景看好的动物模型:全面更新。
简介肌萎缩性脊髓侧索硬化症(ALS)是一种致命的神经退行性疾病,其特征是运动神经元的逐渐丧失。为了了解 ALS 的发病机制,人们制作了多种动物模型。这些动物模型为疾病机制和治疗策略的开发提供了宝贵的见解:在这篇综述中,作者简明扼要地概述了为研究 ALS 而建立的简单遗传模型生物,包括优雅小鼠、果蝇、斑马鱼和小鼠遗传模型。他们强调了每种模型的优点及其在转化研究中的应用,以发现新的化学物质、基因治疗方法和基于抗体的 ALS 治疗策略:在确定 ALS 的新治疗靶点方面正在取得重大进展。这一进展得益于采用日益有效的基因和药理学策略建立的前景看好的动物模型。为了提高药物从动物模型转化到临床治疗 ALS 的成功率,仍有许多挑战需要克服。未来几个有希望的方向包括建立新的临床前方案标准,以及将动物模型与人类诱导多能干细胞(iPSCs)相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
期刊最新文献
Fragment-based approaches to discover ligands for tumor-specific E3 ligases. Scaffold hopping approaches for dual-target antitumor drug discovery: opportunities and challenges. Advances in the design and discovery of next-generation janus kinase-2 (JAK2) inhibitors for the treatment of myeloproliferative neoplasms. Exploring open source as a strategy to enhance R&D productivity. Targeting AGAT gene expression - a drug screening approach for the treatment of GAMT deficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1