Impact of High-Temperature Feeds on Gut Microbiota and MAFLD.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2024-09-28 Epub Date: 2024-07-31 DOI:10.4014/jmb.2405.05023
Lijun Xue, Kaimin Li, Yanfei Jia, Dongxue Yao, Xuexing Guo, Shuhong Zhang
{"title":"Impact of High-Temperature Feeds on Gut Microbiota and MAFLD.","authors":"Lijun Xue, Kaimin Li, Yanfei Jia, Dongxue Yao, Xuexing Guo, Shuhong Zhang","doi":"10.4014/jmb.2405.05023","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to investigate the effects of non-obese MAFLD on the gut microbiota and metabolic pathways caused by high-temperature processed meals. It was decided to divide the eighteen male Sprague-Dawley rats into three groups: the control group, the dry-fried soybeans (DFS) group, and the high-fat diet (HFD) group. Following the passage of twelve weeks, a series of physical, biochemical, histological, and microbiological examinations were carried out. There were distinct pathological abnormalities brought about by each diet. The DFS diet was found to cause the development of fatty liver and to demonstrate strong relationships between components of the gut microbiota, such as Akkermansia and Mucispirillum, and indices of liver health. Diet-induced changes in the gut microbiome have a significant impact on liver pathology in non-obese patients with metabolically altered liver disease (MAFLD), which suggests that dietary interventions that target gut microbiota could be used to manage or prevent the illness.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2405.05023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to investigate the effects of non-obese MAFLD on the gut microbiota and metabolic pathways caused by high-temperature processed meals. It was decided to divide the eighteen male Sprague-Dawley rats into three groups: the control group, the dry-fried soybeans (DFS) group, and the high-fat diet (HFD) group. Following the passage of twelve weeks, a series of physical, biochemical, histological, and microbiological examinations were carried out. There were distinct pathological abnormalities brought about by each diet. The DFS diet was found to cause the development of fatty liver and to demonstrate strong relationships between components of the gut microbiota, such as Akkermansia and Mucispirillum, and indices of liver health. Diet-induced changes in the gut microbiome have a significant impact on liver pathology in non-obese patients with metabolically altered liver disease (MAFLD), which suggests that dietary interventions that target gut microbiota could be used to manage or prevent the illness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温饲料对肠道微生物群和 MAFLD 的影响
本研究旨在探讨非肥胖 MAFLD 对高温加工膳食引起的肠道微生物群和代谢途径的影响。研究决定将 18 只雄性 Sprague-Dawley 大鼠分为三组:对照组、干炸大豆(DFS)组和高脂饮食(HFD)组。十二周后,进行了一系列物理、生化、组织学和微生物学检查。每种饮食都会导致明显的病理异常。研究发现,DFS饮食会导致脂肪肝的发生,而且肠道微生物群(如Akkermansia和Mucispirillum)的成分与肝脏健康指数之间存在密切关系。饮食引起的肠道微生物群变化对患有代谢改变性肝病(MAFLD)的非肥胖患者的肝脏病理学有重大影响,这表明针对肠道微生物群的饮食干预可用于控制或预防该疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Loss in Pluripotency Markers in Mesenchymal Stem Cells upon Infection with Chlamydia trachomatis. Anti-Inflammatory Activity of Biotransformed Platycodon grandiflorum Root Extracts Containing 3-O-β-D-Glucopyranosyl Platycosides in LPS-Stimulated Alveolar Macrophages, NR8383 Cells. Melissa officinalis Regulates Lipopolysaccharide-Induced BV2 Microglial Activation via MAPK and Nrf2 Signaling. Synergistic Antibacterial Effect of Eisenia bicyclis Extracts in Combination with Antibiotics against Fish Pathogenic Bacteria. Probiotics and the Role of Dietary Substrates in Maintaining the Gut Health: Use of Live Microbes and Their Products for Anticancer Effects against Colorectal Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1