Gallic acid-selenium nanoparticles with dual anti-inflammatory and antioxidant functions for synergistic treatment of acute kidney injury

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2024-08-05 DOI:10.1016/j.nano.2024.102775
{"title":"Gallic acid-selenium nanoparticles with dual anti-inflammatory and antioxidant functions for synergistic treatment of acute kidney injury","authors":"","doi":"10.1016/j.nano.2024.102775","DOIUrl":null,"url":null,"abstract":"<div><p>The overexpression of inflammatory factors is closely related to the pathogenesis of acute kidney injury (AKI). Additionally, the overproduction of reactive oxygen species (ROS) further exacerbates the inflammatory response. In light of this, monotherapies focused solely on inflammation have proven to be suboptimal. Therefore, this study successfully developed a nanoparticle (SC@Se/GA) that possesses anti-inflammatory and antioxidant properties. The SC@Se/GA has a smaller size, better stability, and kidney-targeting. In vivo experiments showed that the GPx enzyme activity of SC@Se/GA increases by almost 50 % more than SC@Se alone, indicating its efficient ability to scavenge ROS. In the meantime, SC@Se/GA has a longer renal retention period (&gt;24 h) than free drug GA, which can dramatically lower the levels of inflammatory factors TNF-α and IL-6. In summary, SC@Se/GA, through its synergistic anti-inflammatory and antioxidant effects, markedly alleviates CDDP-induced renal injury and restores renal function, providing a new effective strategy for treating AKI.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963424000443","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The overexpression of inflammatory factors is closely related to the pathogenesis of acute kidney injury (AKI). Additionally, the overproduction of reactive oxygen species (ROS) further exacerbates the inflammatory response. In light of this, monotherapies focused solely on inflammation have proven to be suboptimal. Therefore, this study successfully developed a nanoparticle (SC@Se/GA) that possesses anti-inflammatory and antioxidant properties. The SC@Se/GA has a smaller size, better stability, and kidney-targeting. In vivo experiments showed that the GPx enzyme activity of SC@Se/GA increases by almost 50 % more than SC@Se alone, indicating its efficient ability to scavenge ROS. In the meantime, SC@Se/GA has a longer renal retention period (>24 h) than free drug GA, which can dramatically lower the levels of inflammatory factors TNF-α and IL-6. In summary, SC@Se/GA, through its synergistic anti-inflammatory and antioxidant effects, markedly alleviates CDDP-induced renal injury and restores renal function, providing a new effective strategy for treating AKI.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有抗炎和抗氧化双重功能的没食子酸-硒纳米颗粒可协同治疗急性肾损伤。
炎症因子的过度表达与急性肾损伤(AKI)的发病机制密切相关。此外,活性氧(ROS)的过度产生进一步加剧了炎症反应。有鉴于此,仅针对炎症的单一疗法已被证明是不理想的。因此,本研究成功开发了一种具有抗炎和抗氧化特性的纳米粒子(SC@Se/GA)。SC@Se/GA具有更小的尺寸、更好的稳定性和肾脏靶向性。体内实验表明,SC@Se/GA的GPx酶活性比单独的SC@Se提高了近50%,表明其具有高效清除ROS的能力。同时,与游离药物 GA 相比,SC@Se/GA 在肾脏的滞留时间更长(>24 h),可显著降低炎症因子 TNF-α 和 IL-6 的水平。总之,SC@Se/GA通过其协同抗炎和抗氧化作用,可明显缓解CDDP诱导的肾损伤并恢复肾功能,为治疗AKI提供了一种新的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
Retraction notice to “In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies” [Nanomedicine: Nanotechnology, Biology and Medicine 10/1 (2014) 225–234] Facile fabrication of nano-bioactive glass functionalized blended hydrogel with nucleus pulposus-derived MSCs to improve regeneration potential in treatment of disc degeneration by in vivo rat model. Micellar curcumol for maintenance therapy of ovarian cancer by activating the FOXO3a Conceptual rationale for the use of chemically modified nanocomposites for active influence on atherosclerosis using the greater omentum model of experimental animals Preparation of cubic liquid crystal nanoparticles of puerarin and its protective effect on ischemic stroke
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1