{"title":"Association of Cerebral Hypoperfusion and Poor Collaterals with Cognitive Impairment in Patients with Severe Vertebrobasilar Artery Stenosis.","authors":"Weiyi Zhang, Weilun Fu, Yumei Zhang","doi":"10.3233/ADR-240007","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Effect of stenosis of vertebrobasilar artery (VBA) on cognitive function is elusive.</p><p><strong>Objective: </strong>To investigate association of cerebral hypoperfusion and poor collaterals with vascular cognitive impairment (VCI) in severe VBA stenosis patients.</p><p><strong>Methods: </strong>We consecutively enrolled patients with severe VBA stenosis confirmed by digital subtraction angiography who underwent computed tomographic perfusion (CTP) and cognitive assessments. Patients were divided into poor or good collaterals groups according to the collateral circulation status, and were grouped into different perfusion groups according to CTP. Cognitive function was measured by Montreal Cognitive Assessment (MoCA), Clock Drawing Test, Stroop Color Word Test, Trail Making Test, Digital Span Test, Auditory Verbal Learning Test, and Boston Naming Test scales. The association of cerebral perfusion and collaterals with VCI were explored.</p><p><strong>Results: </strong>Among 88 eligible patients, VCI occurred in 51 (57.9%) patients experienced. Poor collateral was present in 73 (83.0%) patients, and hypoperfusion in 64 (72.7%). Compared with normal perfusion patients, the odds ratio with 95% confidence interval for VCI was 12.5 (3.7-42.4) for overall hypoperfusion, 31.0 (7.1-135.5) for multiple site hypoperfusion, 3.3 (1.0-10.5) for poor collaterals, and 0.1 (0-0.6) for presence of posterior communicating artery (PcoA) compensated for posterior cerebral artery (PCA) and basilar artery (BA). Additionally, decreased scores of cognitive function tests occurred in patients with decompensated perfusion or poor collaterals.</p><p><strong>Conclusions: </strong>Hypoperfusion and poor collaterals were positively associated with cognitive impairment in patients with severe VBA. However, PcoA compensated for the PCA and BA had a protective role in cognitive impairment development.</p>","PeriodicalId":73594,"journal":{"name":"Journal of Alzheimer's disease reports","volume":"8 1","pages":"999-1007"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's disease reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ADR-240007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Effect of stenosis of vertebrobasilar artery (VBA) on cognitive function is elusive.
Objective: To investigate association of cerebral hypoperfusion and poor collaterals with vascular cognitive impairment (VCI) in severe VBA stenosis patients.
Methods: We consecutively enrolled patients with severe VBA stenosis confirmed by digital subtraction angiography who underwent computed tomographic perfusion (CTP) and cognitive assessments. Patients were divided into poor or good collaterals groups according to the collateral circulation status, and were grouped into different perfusion groups according to CTP. Cognitive function was measured by Montreal Cognitive Assessment (MoCA), Clock Drawing Test, Stroop Color Word Test, Trail Making Test, Digital Span Test, Auditory Verbal Learning Test, and Boston Naming Test scales. The association of cerebral perfusion and collaterals with VCI were explored.
Results: Among 88 eligible patients, VCI occurred in 51 (57.9%) patients experienced. Poor collateral was present in 73 (83.0%) patients, and hypoperfusion in 64 (72.7%). Compared with normal perfusion patients, the odds ratio with 95% confidence interval for VCI was 12.5 (3.7-42.4) for overall hypoperfusion, 31.0 (7.1-135.5) for multiple site hypoperfusion, 3.3 (1.0-10.5) for poor collaterals, and 0.1 (0-0.6) for presence of posterior communicating artery (PcoA) compensated for posterior cerebral artery (PCA) and basilar artery (BA). Additionally, decreased scores of cognitive function tests occurred in patients with decompensated perfusion or poor collaterals.
Conclusions: Hypoperfusion and poor collaterals were positively associated with cognitive impairment in patients with severe VBA. However, PcoA compensated for the PCA and BA had a protective role in cognitive impairment development.