Luigi Riz, Cristiano Saltori, Yiming Wang, Elisa Ricci, Fabio Poiesi
{"title":"Novel Class Discovery Meets Foundation Models for 3D Semantic Segmentation","authors":"Luigi Riz, Cristiano Saltori, Yiming Wang, Elisa Ricci, Fabio Poiesi","doi":"10.1007/s11263-024-02180-x","DOIUrl":null,"url":null,"abstract":"<p>The task of Novel Class Discovery (NCD) in semantic segmentation involves training a model to accurately segment unlabelled (novel) classes, using the supervision available from annotated (base) classes. The NCD task within the 3D point cloud domain is novel, and it is characterised by assumptions and challenges absent in its 2D counterpart. This paper advances the analysis of point cloud data in four directions. Firstly, it introduces the novel task of NCD for point cloud semantic segmentation. Secondly, it demonstrates that directly applying an existing NCD method for 2D image semantic segmentation to 3D data yields limited results. Thirdly, it presents a new NCD approach based on online clustering, uncertainty estimation, and semantic distillation. Lastly, it proposes a novel evaluation protocol to rigorously assess the performance of NCD in point cloud semantic segmentation. Through comprehensive evaluations on the SemanticKITTI, SemanticPOSS, and S3DIS datasets, our approach show superior performance compared to the considered baselines.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"127 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02180-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The task of Novel Class Discovery (NCD) in semantic segmentation involves training a model to accurately segment unlabelled (novel) classes, using the supervision available from annotated (base) classes. The NCD task within the 3D point cloud domain is novel, and it is characterised by assumptions and challenges absent in its 2D counterpart. This paper advances the analysis of point cloud data in four directions. Firstly, it introduces the novel task of NCD for point cloud semantic segmentation. Secondly, it demonstrates that directly applying an existing NCD method for 2D image semantic segmentation to 3D data yields limited results. Thirdly, it presents a new NCD approach based on online clustering, uncertainty estimation, and semantic distillation. Lastly, it proposes a novel evaluation protocol to rigorously assess the performance of NCD in point cloud semantic segmentation. Through comprehensive evaluations on the SemanticKITTI, SemanticPOSS, and S3DIS datasets, our approach show superior performance compared to the considered baselines.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.