Study on the mechanism of hepatotoxicity of Aucklandiae radix through liver metabolomics and network pharmacology.

IF 2.2 4区 医学 Q3 TOXICOLOGY Toxicology Research Pub Date : 2024-08-07 eCollection Date: 2024-08-01 DOI:10.1093/toxres/tfae123
Shen Song, Rongli Qiu, Yan Huang, Zhuxiu Zhou, Jin Yan, Qiaochan Ou, Donghui Wei, Jingxuan He, Yi Liang, Xingyue Du, Weifeng Yao, Tulin Lu
{"title":"Study on the mechanism of hepatotoxicity of Aucklandiae radix through liver metabolomics and network pharmacology.","authors":"Shen Song, Rongli Qiu, Yan Huang, Zhuxiu Zhou, Jin Yan, Qiaochan Ou, Donghui Wei, Jingxuan He, Yi Liang, Xingyue Du, Weifeng Yao, Tulin Lu","doi":"10.1093/toxres/tfae123","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aucklandiae Radix (CAR) and its roasted processed products (PAR) are extensively used in various Chinese patent medicines due to their diverse pharmacological activities. However, numerous side effects of CAR have been reported and the hepatotoxicity and the corresponding mechanisms have not been thoroughly investigated. Our study aims to explore the underlying mechanism of the hepatotoxic impacts of CAR.</p><p><strong>Methods: </strong>In this study, metabolomic analysis was performed using liver tissue from the mice administered with different dosages of CAR/PAR extracts to examine the hepatotoxic impacts of CAR and elucidate the underlying mechanism. Network pharmacology was employed to predict the potential molecular targets and associated signaling pathways based on the distinctive compounds between CAR and PAR. A composition-target-GO-Bio process-metabolic pathway network was constructed by integrating the hepatotoxicity-related metabolic pathways. Finally, the target proteins related with the hepatotoxic effect of CAR were identified and validated in vivo.</p><p><strong>Results: </strong>The metabolomics analysis revealed that 33 related metabolic pathways were significantly altered in the high-dose CAR group, four of which were associated with the hepatotoxicity and could be alleviated by PAR. The network identified NQO1 as the primary target of the hepatotoxic effect induced by CAR exposure, which was subsequently verified by Western Blotting. Further evidence in vivo demonstrated that Nrf2 and HO-1, closely related to NQO1, were also the main targets through which CAR induced the liver injury, and that oxidative stress should be the primary mechanism for the CAR-induced hepatotoxicity.</p><p><strong>Conclusions: </strong>This preliminary study on the hepatic toxic injury of CAR provides a theoretical basis for the rational and safe use of CAR rationally and safely in clinical settings.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae123"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Aucklandiae Radix (CAR) and its roasted processed products (PAR) are extensively used in various Chinese patent medicines due to their diverse pharmacological activities. However, numerous side effects of CAR have been reported and the hepatotoxicity and the corresponding mechanisms have not been thoroughly investigated. Our study aims to explore the underlying mechanism of the hepatotoxic impacts of CAR.

Methods: In this study, metabolomic analysis was performed using liver tissue from the mice administered with different dosages of CAR/PAR extracts to examine the hepatotoxic impacts of CAR and elucidate the underlying mechanism. Network pharmacology was employed to predict the potential molecular targets and associated signaling pathways based on the distinctive compounds between CAR and PAR. A composition-target-GO-Bio process-metabolic pathway network was constructed by integrating the hepatotoxicity-related metabolic pathways. Finally, the target proteins related with the hepatotoxic effect of CAR were identified and validated in vivo.

Results: The metabolomics analysis revealed that 33 related metabolic pathways were significantly altered in the high-dose CAR group, four of which were associated with the hepatotoxicity and could be alleviated by PAR. The network identified NQO1 as the primary target of the hepatotoxic effect induced by CAR exposure, which was subsequently verified by Western Blotting. Further evidence in vivo demonstrated that Nrf2 and HO-1, closely related to NQO1, were also the main targets through which CAR induced the liver injury, and that oxidative stress should be the primary mechanism for the CAR-induced hepatotoxicity.

Conclusions: This preliminary study on the hepatic toxic injury of CAR provides a theoretical basis for the rational and safe use of CAR rationally and safely in clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过肝脏代谢组学和网络药理学研究金银花的肝毒性机制
背景:白头翁(CAR)及其焙烤加工品(PAR)具有多种药理活性,被广泛用于各种中成药中。然而,关于金银花副作用的报道不胜枚举,其中的肝毒性及其机制尚未得到深入研究。我们的研究旨在探索CAR肝毒性影响的内在机制:本研究使用不同剂量的 CAR/PAR 提取物对小鼠肝组织进行了代谢组学分析,以研究 CAR 的肝毒性影响并阐明其潜在机制。根据 CAR 和 PAR 的不同化合物,采用网络药理学预测了潜在的分子靶点和相关信号通路。通过整合与肝毒性相关的代谢通路,构建了成分-靶点-GO-生物过程-代谢通路网络。最后,确定了与CAR肝毒性效应相关的靶蛋白,并在体内进行了验证:代谢组学分析表明,33条相关代谢通路在大剂量CAR组中发生了显著改变,其中4条与肝毒性相关,可通过PAR缓解肝毒性。该网络确定NQO1是CAR暴露诱导肝毒性效应的主要靶点,这一点随后通过Western印迹法得到了验证。进一步的体内证据表明,与NQO1密切相关的Nrf2和HO-1也是CAR诱导肝损伤的主要靶点,氧化应激应是CAR诱导肝毒性的主要机制:这项关于CAR肝毒性损伤的初步研究为临床合理、安全地使用CAR提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
期刊最新文献
Unveiling the interspecies correlation and sensitivity factor analysis of rat and mouse acute oral toxicity of antimicrobial agents: first QSTR and QTTR Modeling report. Stress survival and longevity of Caenorhabditis elegans lacking NCS-1. Lipid-core nanocapsules containing simvastatin do not affect the biochemical and hematological indicators of toxicity in rats. Proteomics reveals that nanoplastics with different sizes induce hepatocyte apoptosis in mice through distinct mechanisms involving mitophagy dysregulation and cell cycle arrest. Antibiotic contaminants and their impact in Gingee River, Puducherry: insights from SPE-UPLC-MS/MS and zebrafish study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1