{"title":"The Host miR-17-92 Cluster Negatively Regulates Mouse Mammary Tumor Virus (MMTV) Replication Primarily Via Cluster Member miR-92a","authors":"","doi":"10.1016/j.jmb.2024.168738","DOIUrl":null,"url":null,"abstract":"<div><p>The mouse mammary tumor virus (MMTV) is a well-known causative agent of breast cancer in mice. Previously, we have shown that MMTV dysregulates expression of the host miR-17-92 cluster in MMTV-infected mammary glands and MMTV-induced tumors. This cluster, better known as oncomiR-1, is frequently dysregulated in cancers, particularly breast cancer. In this study, our aim was to uncover a functional interaction between MMTV and the cluster. Our results reveal that MMTV expression led to dysregulation of the cluster in both mammary epithelial HC11 and HEK293T cells with the expression of miR-92a cluster member being affected the most. Conversely, overexpression of the whole or partial cluster significantly repressed MMTV expression. Notably, overexpression of cluster member miR-92a alone repressed MMTV expression to the same extent as overexpression of the complete/partial cluster. Inhibition of miR-92a led to nearly a complete restoration of MMTV expression, while deletion/substitution of the miR-92a seed sequence rescued MMTV expression. Dual luciferase assays identified MMTV genomic RNA as the potential target of miR-92a. These results show that the miR-17-92 cluster acts as part of the cell’s well-known miRNA-based anti-viral response to thwart incoming MMTV infection. Thus, this study provides the first evidence highlighting the biological significance of host miRNAs in regulating MMTV replication and potentially influencing tumorigenesis.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624003474/pdfft?md5=04a973754bd47af28d9638641141dae1&pid=1-s2.0-S0022283624003474-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624003474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The mouse mammary tumor virus (MMTV) is a well-known causative agent of breast cancer in mice. Previously, we have shown that MMTV dysregulates expression of the host miR-17-92 cluster in MMTV-infected mammary glands and MMTV-induced tumors. This cluster, better known as oncomiR-1, is frequently dysregulated in cancers, particularly breast cancer. In this study, our aim was to uncover a functional interaction between MMTV and the cluster. Our results reveal that MMTV expression led to dysregulation of the cluster in both mammary epithelial HC11 and HEK293T cells with the expression of miR-92a cluster member being affected the most. Conversely, overexpression of the whole or partial cluster significantly repressed MMTV expression. Notably, overexpression of cluster member miR-92a alone repressed MMTV expression to the same extent as overexpression of the complete/partial cluster. Inhibition of miR-92a led to nearly a complete restoration of MMTV expression, while deletion/substitution of the miR-92a seed sequence rescued MMTV expression. Dual luciferase assays identified MMTV genomic RNA as the potential target of miR-92a. These results show that the miR-17-92 cluster acts as part of the cell’s well-known miRNA-based anti-viral response to thwart incoming MMTV infection. Thus, this study provides the first evidence highlighting the biological significance of host miRNAs in regulating MMTV replication and potentially influencing tumorigenesis.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.