{"title":"Development of a certified reference material for D-phenylalanine with evaluation of enantiomeric purity.","authors":"Shiwen Luo, Yahui Liu, Xianxia Wang, Ziliang Wang, Bin Yang, Jing Wang, Liqing Wu","doi":"10.1007/s00216-024-05456-w","DOIUrl":null,"url":null,"abstract":"<p><p>D-Phenylalanine (D-Phe) is a small chiral organic molecule that is both an important pharmaceutical intermediate and used as a calibrator for quantifying amino acids in liquid chromatography-circular dichroism. We have developed a process for a national certified reference material (CRM) for D-Phe following ISO 17034:2016. The identity of D-Phe was confirmed using mass spectrometry (MS) and nuclear magnetic resonance (NMR), infrared, and ultraviolet (UV) spectroscopy. The absolute optical conformation was also determined using circular dichroism (CD) spectroscopy and optical rotation measurements. Impurities were identified via liquid chromatography (LC) with a UV-Vis detector and a charged aerosol detector (CAD) and LC-MS. Both mass balance and quantitative NMR were employed for value assessment, and the associated uncertainty was evaluated. The certified purity was determined to be 0.995 ± 0.003 g/g, a validation that was confirmed by CD using L-Phe CRM as a calibrator. Twenty milligrams of raw material was packed in sealed brown glass tubes for storage, and no inhomogeneity was observed. Stability tests revealed that the D-Phe CRM remained stable at -20 °C for at least 26 months, at 4 °C for at least 14 days, and at 25 °C and 60 °C for at least 7 days. The D-Phe CRM can be used to ensure the accuracy and reliability of D-Phe quantitation in the pharmaceutical field and also as a calibrator to ensure traceability to the International System of Units (SI) for L-Phe quantitation and protein purity analysis using LC-CD methods. The approach outlined in this paper also has potential for use in the development of other chiral CRMs.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05456-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
D-Phenylalanine (D-Phe) is a small chiral organic molecule that is both an important pharmaceutical intermediate and used as a calibrator for quantifying amino acids in liquid chromatography-circular dichroism. We have developed a process for a national certified reference material (CRM) for D-Phe following ISO 17034:2016. The identity of D-Phe was confirmed using mass spectrometry (MS) and nuclear magnetic resonance (NMR), infrared, and ultraviolet (UV) spectroscopy. The absolute optical conformation was also determined using circular dichroism (CD) spectroscopy and optical rotation measurements. Impurities were identified via liquid chromatography (LC) with a UV-Vis detector and a charged aerosol detector (CAD) and LC-MS. Both mass balance and quantitative NMR were employed for value assessment, and the associated uncertainty was evaluated. The certified purity was determined to be 0.995 ± 0.003 g/g, a validation that was confirmed by CD using L-Phe CRM as a calibrator. Twenty milligrams of raw material was packed in sealed brown glass tubes for storage, and no inhomogeneity was observed. Stability tests revealed that the D-Phe CRM remained stable at -20 °C for at least 26 months, at 4 °C for at least 14 days, and at 25 °C and 60 °C for at least 7 days. The D-Phe CRM can be used to ensure the accuracy and reliability of D-Phe quantitation in the pharmaceutical field and also as a calibrator to ensure traceability to the International System of Units (SI) for L-Phe quantitation and protein purity analysis using LC-CD methods. The approach outlined in this paper also has potential for use in the development of other chiral CRMs.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.