Sex differences in gray matter, white matter, and regional brain perfusion in young, healthy adults.

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS American journal of physiology. Heart and circulatory physiology Pub Date : 2024-10-01 Epub Date: 2024-08-09 DOI:10.1152/ajpheart.00341.2024
Jessica D Muer, Kaylin D Didier, Brett M Wannebo, Sophie Sanchez, Hedyeh Khademi Motlagh, Travis L Haley, Katrina J Carter, Nile F Banks, Marlowe W Eldridge, Ronald C Serlin, Oliver Wieben, William G Schrage
{"title":"Sex differences in gray matter, white matter, and regional brain perfusion in young, healthy adults.","authors":"Jessica D Muer, Kaylin D Didier, Brett M Wannebo, Sophie Sanchez, Hedyeh Khademi Motlagh, Travis L Haley, Katrina J Carter, Nile F Banks, Marlowe W Eldridge, Ronald C Serlin, Oliver Wieben, William G Schrage","doi":"10.1152/ajpheart.00341.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebrovascular and neurological diseases exhibit sex-specific patterns in prevalence, severity, and regional specificity, some of which are associated with altered cerebral blood flow (CBF). Females often exhibit higher resting CBF, but understanding the impact of sex per se on CBF is hampered by study variability in age, comorbidities, medications, and control for menstrual cycle or hormone therapies. A majority of studies report whole brain CBF without differentiating between gray and white matter or without assessing regional CBF. Thus fundamental sex differences in regional or whole brain CBF remain unclarified. While controlling for the above confounders, we tested the hypothesis that females will exhibit higher total gray and white matter perfusion as well as regional gray matter perfusion. Adults 18-30 yr old (females = 22 and males = 26) were studied using arterial spin labeling (ASL) magnetic resonance imaging (MRI) scans followed by computational anatomy toolbox (CAT12) analysis in statistical parametric mapping (SPM12) to quantify CBF relative to brain volume. Females displayed 40% higher perfusion globally (females = 62 ± 9 and males = 45 ± 10 mL/100 g/min, <i>P</i> < 0.001), gray matter (females = 75 ± 11 and males = 54 ± 12 mL/100 g/min, <i>P</i> < 0.001), and white matter (females = 44 ± 6 and males = 32 ± 7 mL/100 g/min, <i>P</i> < 0.001). Females exhibited greater perfusion than males in 67 of the 68 regions tested, ranging from 14% to 66% higher. A second MRI approach (4-dimensional flow) focused on large arteries confirmed the sex difference in global CBF. These data indicate strikingly higher basal CBF in females at global, gray, and white matter levels and across dozens of brain regions and offer new clarity into fundamental sex differences in global and regional CBF regulation before aging or pathology.<b>NEW & NOTEWORTHY</b> MRI used to measure cerebral blood flow (CBF) in gray matter, white matter, and 68 regions in healthy men and women. This study demonstrated that CBF is 40% higher in women, the highest sex difference reported, when controlling for numerous important clinical confounders like age, smoking, menstrual cycle, comorbidities, and medications.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H847-H858"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482274/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00341.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cerebrovascular and neurological diseases exhibit sex-specific patterns in prevalence, severity, and regional specificity, some of which are associated with altered cerebral blood flow (CBF). Females often exhibit higher resting CBF, but understanding the impact of sex per se on CBF is hampered by study variability in age, comorbidities, medications, and control for menstrual cycle or hormone therapies. A majority of studies report whole brain CBF without differentiating between gray and white matter or without assessing regional CBF. Thus fundamental sex differences in regional or whole brain CBF remain unclarified. While controlling for the above confounders, we tested the hypothesis that females will exhibit higher total gray and white matter perfusion as well as regional gray matter perfusion. Adults 18-30 yr old (females = 22 and males = 26) were studied using arterial spin labeling (ASL) magnetic resonance imaging (MRI) scans followed by computational anatomy toolbox (CAT12) analysis in statistical parametric mapping (SPM12) to quantify CBF relative to brain volume. Females displayed 40% higher perfusion globally (females = 62 ± 9 and males = 45 ± 10 mL/100 g/min, P < 0.001), gray matter (females = 75 ± 11 and males = 54 ± 12 mL/100 g/min, P < 0.001), and white matter (females = 44 ± 6 and males = 32 ± 7 mL/100 g/min, P < 0.001). Females exhibited greater perfusion than males in 67 of the 68 regions tested, ranging from 14% to 66% higher. A second MRI approach (4-dimensional flow) focused on large arteries confirmed the sex difference in global CBF. These data indicate strikingly higher basal CBF in females at global, gray, and white matter levels and across dozens of brain regions and offer new clarity into fundamental sex differences in global and regional CBF regulation before aging or pathology.NEW & NOTEWORTHY MRI used to measure cerebral blood flow (CBF) in gray matter, white matter, and 68 regions in healthy men and women. This study demonstrated that CBF is 40% higher in women, the highest sex difference reported, when controlling for numerous important clinical confounders like age, smoking, menstrual cycle, comorbidities, and medications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
年轻健康成年人灰质、白质和区域脑灌注的性别差异。
脑血管和神经系统疾病在发病率、严重程度和区域特异性方面表现出性别特异性,其中一些疾病与脑血流(CBF)的改变有关。女性通常表现出较高的静息 CBF,但由于在年龄、合并症、药物、月经周期控制或激素疗法等方面的研究差异,影响了对性别本身对 CBF 影响的理解。大多数研究报告了全脑 CBF,但没有区分灰质和白质,也没有评估区域 CBF。因此,区域或全脑 CBF 的基本性别差异仍未澄清。在控制上述混杂因素的同时,我们测试了女性会表现出更高的灰质和白质总灌注量以及区域灰质灌注量的假设。我们使用动脉自旋标记(ASL)核磁共振成像(MRI)扫描对 18-30 岁的成年人(女性 22 人,男性 26 人)进行了研究,然后使用统计参数映射(SPM12)中的计算解剖工具箱(CAT12)进行分析,以量化相对于脑容量的 CBF。女性的全球灌注量高出 40%(女性 =62±9,男性 =45±10mL/100g/min,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
期刊最新文献
A zebrafish model to study RRAGD variants associated cardiomyopathy. Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure. Impaired endothelial function contributes to cardiac dysfunction - role of mitochondrial dynamics. Predictive value of triglyceride-glucose index for the evaluation of coronary artery disease severity and occurrence of major adverse cardiovascular events. What frozen human hearts can tell us about treating heart failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1