Female-specific mechanisms of meiotic initiation and progression in mammalian oocyte development.

IF 1.3 4区 生物学 Q4 CELL BIOLOGY Genes to Cells Pub Date : 2024-08-09 DOI:10.1111/gtc.13152
Ryuki Shimada, Kei-Ichiro Ishiguro
{"title":"Female-specific mechanisms of meiotic initiation and progression in mammalian oocyte development.","authors":"Ryuki Shimada, Kei-Ichiro Ishiguro","doi":"10.1111/gtc.13152","DOIUrl":null,"url":null,"abstract":"<p><p>Meiosis is regulated in sexually dimorphic manners in mammals. In females, the commitment to and entry into meiosis are coordinated with the developmental program of oocytes. Female germ cells initiate meiosis within a short time window during the fetal period and then undergo meiotic arrest until puberty. However, the genetic mechanisms underlying the orchestration of oocyte development and meiosis to maximize the reproductive lifespan of mammalian females remain largely elusive. While meiotic initiation is regulated by a sexually common mechanism, where meiosis initiator and Stimulated by Retinoic Acid Gene 8 (STRA8) activate the meiotic genes, the female-specific mode of meiotic initiation is mediated by the interaction between retinoblastoma (RB) and STRA8. This review highlights the female-specific mechanisms of meiotic initiation and meiotic prophase progression in the context of oocyte development. Furthermore, the downstream pathway of the RB-STRA8 interaction that may regulate meiotic arrest will be discussed in the context of oocyte development, highlighting a potential genetic link between the female-specific mode of meiotic entry and meiotic arrest.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/gtc.13152","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Meiosis is regulated in sexually dimorphic manners in mammals. In females, the commitment to and entry into meiosis are coordinated with the developmental program of oocytes. Female germ cells initiate meiosis within a short time window during the fetal period and then undergo meiotic arrest until puberty. However, the genetic mechanisms underlying the orchestration of oocyte development and meiosis to maximize the reproductive lifespan of mammalian females remain largely elusive. While meiotic initiation is regulated by a sexually common mechanism, where meiosis initiator and Stimulated by Retinoic Acid Gene 8 (STRA8) activate the meiotic genes, the female-specific mode of meiotic initiation is mediated by the interaction between retinoblastoma (RB) and STRA8. This review highlights the female-specific mechanisms of meiotic initiation and meiotic prophase progression in the context of oocyte development. Furthermore, the downstream pathway of the RB-STRA8 interaction that may regulate meiotic arrest will be discussed in the context of oocyte development, highlighting a potential genetic link between the female-specific mode of meiotic entry and meiotic arrest.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哺乳动物卵母细胞发育过程中雌性特有的减数分裂启动和进展机制
哺乳动物的减数分裂受性双态调节。在雌性动物中,减数分裂的承诺和进入与卵母细胞的发育程序相协调。雌性生殖细胞在胎儿期的一个短时间窗口内启动减数分裂,然后减数分裂停止,直到青春期。然而,协调卵母细胞发育和减数分裂以最大限度地延长哺乳动物雌性生殖寿命的遗传机制在很大程度上仍然难以捉摸。减数分裂的启动受性共通机制的调控,即减数分裂启动子和视黄酸基因8(STRA8)激活减数分裂基因,而雌性特有的减数分裂启动模式则由视网膜母细胞瘤(RB)和STRA8之间的相互作用介导。本综述强调了在卵母细胞发育过程中,减数分裂启动和减数分裂前期进展的雌性特异性机制。此外,还将在卵母细胞发育的背景下讨论可能调控减数分裂停滞的 RB-STRA8 相互作用的下游途径,强调雌性特异性减数分裂启动模式与减数分裂停滞之间的潜在遗传联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genes to Cells
Genes to Cells 生物-细胞生物学
CiteScore
3.40
自引率
0.00%
发文量
71
审稿时长
3 months
期刊介绍: Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.
期刊最新文献
The repertoire of G-protein-coupled receptor variations in the Japanese population 54KJPN. Elimination of physiological senescent cutaneous cells in a novel p16‐dependent senolytic mouse model impacts lipid metabolism in skin aging Accelerated BDNF expression in visceral white adipose tissues following high-fat diet feeding in mice. Capsaicin modulates TRPV1, induces β‐defensin expression, and regulates NF‐κB in oral senescent cells and a murine model Neonatal Fc receptor is a functional receptor for classical human astrovirus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1