{"title":"Neuroprotective Effects of AER-271 in a tMCAO Mouse Model: Modulation of Autophagy, Apoptosis, and Inflammation.","authors":"Shenglong Mo, Chengmin Yang, Xingwu Zheng, Hui Lv, Sanyin Mao, Ning Liu, Qin Yang, Bao Liao, Meiling Yang, Zhicheng Lu, Lina Tang, Xiaorui Huang, Chongdong Jian, Xuebin Li, Jingwei Shang","doi":"10.1007/s10753-024-02082-7","DOIUrl":null,"url":null,"abstract":"<p><p>Following ischemic stroke, aquaporin 4 (AQP4) expression modifications have been associated with increased inflammation. However, the underlying mechanisms are not fully understood. This study aims to elucidate the mechanistic basis of post-cerebral ischemia-reperfusion (I/R) inflammation by employing the AQP4-specific inhibitor, AER-271. The middle cerebral artery occlusion (MCAO) model was used to induce ischemic stroke in mice. C57BL/6 mice were randomly allocated into four groups: sham operation, I/R, AER-271, and 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020) treatment, with observations recorded at 1 day, 3 days, and 7 days post-tMCAO. Each group consisted of 15 mice. Procedures included histological examination through HE staining, neurological scoring, Western blot analysis, and immunofluorescence staining. AER-271 treatment yielded significant improvements in post-stroke weight recovery and neurological scores, accompanied by a reduction in cerebral infarction volume. Moreover, AER-271 exhibited a noticeable influence on autophagic and apoptotic pathways, affecting the activation of both pro-inflammatory and anti-inflammatory cytokines. Alterations in the levels of inflammatory biomarkers MCP-1, NLRP3, and caspase 1 were also detected. Finally, a comparative assessment of the effects of AER-271 and TGN-020 in mitigating apoptosis and microglial polarization in ischemic mice revealed neuroprotective effects with no significant difference in efficacy. This study provides essential insights into the neuroprotective mechanisms of AER-271 in cerebral ischemia-reperfusion injury, offering potential clinical applications in the treatment of ischemic cerebrovascular disorders.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02082-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Following ischemic stroke, aquaporin 4 (AQP4) expression modifications have been associated with increased inflammation. However, the underlying mechanisms are not fully understood. This study aims to elucidate the mechanistic basis of post-cerebral ischemia-reperfusion (I/R) inflammation by employing the AQP4-specific inhibitor, AER-271. The middle cerebral artery occlusion (MCAO) model was used to induce ischemic stroke in mice. C57BL/6 mice were randomly allocated into four groups: sham operation, I/R, AER-271, and 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020) treatment, with observations recorded at 1 day, 3 days, and 7 days post-tMCAO. Each group consisted of 15 mice. Procedures included histological examination through HE staining, neurological scoring, Western blot analysis, and immunofluorescence staining. AER-271 treatment yielded significant improvements in post-stroke weight recovery and neurological scores, accompanied by a reduction in cerebral infarction volume. Moreover, AER-271 exhibited a noticeable influence on autophagic and apoptotic pathways, affecting the activation of both pro-inflammatory and anti-inflammatory cytokines. Alterations in the levels of inflammatory biomarkers MCP-1, NLRP3, and caspase 1 were also detected. Finally, a comparative assessment of the effects of AER-271 and TGN-020 in mitigating apoptosis and microglial polarization in ischemic mice revealed neuroprotective effects with no significant difference in efficacy. This study provides essential insights into the neuroprotective mechanisms of AER-271 in cerebral ischemia-reperfusion injury, offering potential clinical applications in the treatment of ischemic cerebrovascular disorders.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.