Wei Zhang, Yongzhe Chen, Qinghua Ji, Yuying Fan, Gong Zhang, Xi Lu, Chengzhi Hu, Huijuan Liu, Jiuhui Qu
{"title":"Assessing global drinking water potential from electricity-free solar water evaporation device.","authors":"Wei Zhang, Yongzhe Chen, Qinghua Ji, Yuying Fan, Gong Zhang, Xi Lu, Chengzhi Hu, Huijuan Liu, Jiuhui Qu","doi":"10.1038/s41467-024-51115-0","DOIUrl":null,"url":null,"abstract":"<p><p>Universal and equitable access to affordable safely managed drinking water (SMDW) is a significant challenge and is highlighted by the United Nations' Sustainable Development Goals-6.1. However, SMDW coverage by 2030 is estimated to reach only 81% of the global population. Solar water evaporation (SWE) represents one potential method to ensure decentralized water purification, but its potential for addressing the global SMDW challenge remains unclear. We use a condensation-enhanced strategy and develop a physics-guided machine learning model for assessing the global potential of SWE technology to meet SMDW demand for unserved populations without external electricity input. We find that a condensation-enhanced SWE device (1 m<sup>2</sup>) can supply enough drinking water (2.5 L day<sup>-1</sup>) to 95.8% of the population lacking SMDW. SWE can help fulfill universal SMDW coverage by 2030 with an annual cost of 10.4 billion U.S. dollars, saving 66.7% of the current investment and fulfilling the SDG-6.1 goal.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51115-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Universal and equitable access to affordable safely managed drinking water (SMDW) is a significant challenge and is highlighted by the United Nations' Sustainable Development Goals-6.1. However, SMDW coverage by 2030 is estimated to reach only 81% of the global population. Solar water evaporation (SWE) represents one potential method to ensure decentralized water purification, but its potential for addressing the global SMDW challenge remains unclear. We use a condensation-enhanced strategy and develop a physics-guided machine learning model for assessing the global potential of SWE technology to meet SMDW demand for unserved populations without external electricity input. We find that a condensation-enhanced SWE device (1 m2) can supply enough drinking water (2.5 L day-1) to 95.8% of the population lacking SMDW. SWE can help fulfill universal SMDW coverage by 2030 with an annual cost of 10.4 billion U.S. dollars, saving 66.7% of the current investment and fulfilling the SDG-6.1 goal.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.