Based on Cardiopulmonary Exercise Testing to Construct and Validate Nomogram of Long-Term Prognosis Within 12 Months for NSCLC

IF 1.9 4区 医学 Q3 RESPIRATORY SYSTEM Clinical Respiratory Journal Pub Date : 2024-08-08 DOI:10.1111/crj.13806
Xinyu Wang, Jin Li, Jingjie Zhou, Min Gao, Bin Wang, Yiman Tong, Yuhan Cao, Wei Chen
{"title":"Based on Cardiopulmonary Exercise Testing to Construct and Validate Nomogram of Long-Term Prognosis Within 12 Months for NSCLC","authors":"Xinyu Wang,&nbsp;Jin Li,&nbsp;Jingjie Zhou,&nbsp;Min Gao,&nbsp;Bin Wang,&nbsp;Yiman Tong,&nbsp;Yuhan Cao,&nbsp;Wei Chen","doi":"10.1111/crj.13806","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Construction nomogram was to effectively predict long-term prognosis in patients with non-small cell lung cancer (NSCLC).</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>The nomogram is developed by a retrospective study of 347 patients with NSCLC who underwent cardiopulmonary exercise testing (CPET) before surgery from May 2019 to February 2022. Cross-validation divided the data into a training cohort and validation cohort. The discrimination and accuracy ability of the nomogram were proofed by concordance index (C-index), calibration curve, receiver operating characteristic (ROC) curve, the area under the curve (AUC), and time-dependent ROC in validation cohort.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Age, intraoperative blood loss, VO<sub>2</sub> peak, and VE/VCO<sub>2</sub> slope were included in the model of nomogram. The model demonstrated good discrimination and accuracy with C-index of 0.770 (95% CI: 0.712–0.822). AUC of 6 (AUC: 0.789, 95% CI: 0.726–0.851) and 12 months (AUC: 0.787, 95% CI: 0.724–0.850) were shown in ROC. Time-independent ROC maintains a good effect within 12 months.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>We developed a nomogram based on CPET. This model has a good ability of discrimination and accuracy. It could help clinicians to make treatment decision in clinical decision.</p>\n </section>\n </div>","PeriodicalId":55247,"journal":{"name":"Clinical Respiratory Journal","volume":"18 8","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Respiratory Journal","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/crj.13806","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Construction nomogram was to effectively predict long-term prognosis in patients with non-small cell lung cancer (NSCLC).

Materials and Methods

The nomogram is developed by a retrospective study of 347 patients with NSCLC who underwent cardiopulmonary exercise testing (CPET) before surgery from May 2019 to February 2022. Cross-validation divided the data into a training cohort and validation cohort. The discrimination and accuracy ability of the nomogram were proofed by concordance index (C-index), calibration curve, receiver operating characteristic (ROC) curve, the area under the curve (AUC), and time-dependent ROC in validation cohort.

Results

Age, intraoperative blood loss, VO2 peak, and VE/VCO2 slope were included in the model of nomogram. The model demonstrated good discrimination and accuracy with C-index of 0.770 (95% CI: 0.712–0.822). AUC of 6 (AUC: 0.789, 95% CI: 0.726–0.851) and 12 months (AUC: 0.787, 95% CI: 0.724–0.850) were shown in ROC. Time-independent ROC maintains a good effect within 12 months.

Conclusion

We developed a nomogram based on CPET. This model has a good ability of discrimination and accuracy. It could help clinicians to make treatment decision in clinical decision.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于心肺运动测试构建并验证 NSCLC 12 个月内长期预后的提名图
目的:构建提名图以有效预测非小细胞肺癌(NSCLC)患者的长期预后:构建提名图以有效预测非小细胞肺癌(NSCLC)患者的长期预后:通过对2019年5月至2022年2月期间347名术前接受心肺运动测试(CPET)的NSCLC患者进行回顾性研究,建立了提名图。交叉验证将数据分为训练队列和验证队列。在验证队列中,通过一致性指数(C-index)、校准曲线、接收者操作特征曲线(ROC)、曲线下面积(AUC)和时间依赖性ROC来证明提名图的区分度和准确性:结果:年龄、术中失血量、VO2 峰值和 VE/VCO2 斜率均被纳入提名图模型。该模型具有良好的区分度和准确性,C 指数为 0.770(95% CI:0.712-0.822)。在 ROC 中显示了 6 个月(AUC:0.789,95% CI:0.726-0.851)和 12 个月(AUC:0.787,95% CI:0.724-0.850)的 AUC。与时间无关的 ROC 在 12 个月内保持良好的效果:我们建立了一个基于 CPET 的提名图。结论:我们开发了一种基于 CPET 的提名图,该模型具有良好的辨别能力和准确性。结论:我们建立了基于 CPET 的提名图,该模型具有良好的区分能力和准确性,可以帮助临床医生在临床决策中做出治疗决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical Respiratory Journal
Clinical Respiratory Journal 医学-呼吸系统
CiteScore
3.70
自引率
0.00%
发文量
104
审稿时长
>12 weeks
期刊介绍: Overview Effective with the 2016 volume, this journal will be published in an online-only format. Aims and Scope The Clinical Respiratory Journal (CRJ) provides a forum for clinical research in all areas of respiratory medicine from clinical lung disease to basic research relevant to the clinic. We publish original research, review articles, case studies, editorials and book reviews in all areas of clinical lung disease including: Asthma Allergy COPD Non-invasive ventilation Sleep related breathing disorders Interstitial lung diseases Lung cancer Clinical genetics Rhinitis Airway and lung infection Epidemiology Pediatrics CRJ provides a fast-track service for selected Phase II and Phase III trial studies. Keywords Clinical Respiratory Journal, respiratory, pulmonary, medicine, clinical, lung disease, Abstracting and Indexing Information Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Embase (Elsevier) Health & Medical Collection (ProQuest) Health Research Premium Collection (ProQuest) HEED: Health Economic Evaluations Database (Wiley-Blackwell) Hospital Premium Collection (ProQuest) Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) ProQuest Central (ProQuest) Science Citation Index Expanded (Clarivate Analytics) SCOPUS (Elsevier)
期刊最新文献
Highly Sensitive and Specific Panels of Plasma Exosomal microRNAs for Identification of Malignant Pulmonary Nodules A Novel Scale for Diagnosis of Pulmonary Ground-Glass Nodules: A Multicenter and Ambispective Cohort Study Prognostic Nomogram for Predicting Survival in Asian Patients With Small-Cell Lung Cancer: A Comprehensive Population-Based Study and External Verification Ergotamine Targets KIF5A to Facilitate Anoikis in Lung Adenocarcinoma IGF2BP3/CTCF Axis–Dependent NT5DC2 Promotes M2 Macrophage Polarization to Enhance the Malignant Progression of Lung Squamous Cell Carcinomas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1