Amlan Chakraborty, Chao Wang, Margeaux Hodgson-Garms, Brad R S Broughton, Jessica E Frith, Kilian Kelly, Chrishan S Samuel
{"title":"Induced pluripotent stem cell-derived mesenchymal stem cells reverse bleomycin-induced pulmonary fibrosis and related lung stiffness.","authors":"Amlan Chakraborty, Chao Wang, Margeaux Hodgson-Garms, Brad R S Broughton, Jessica E Frith, Kilian Kelly, Chrishan S Samuel","doi":"10.1016/j.biopha.2024.117259","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is characterised by lung scarring and stiffening, for which there is no effective cure. Based on the immunomodulatory and anti-fibrotic effects of induced pluripotent stem cell (iPSC) and mesenchymoangioblast-derived mesenchymal stem cells (iPSCs-MSCs), this study evaluated the therapeutic effects of iPSCs-MSCs in a bleomycin (BLM)-induced model of pulmonary fibrosis. Adult male C57BL/6 mice received a double administration of BLM (0.15 mg/day) 7-days apart and were then maintained for a further 28-days (until day-35), whilst control mice were administered saline 7-days apart and maintained for the same time-period. Sub-groups of BLM-injured mice were intravenously-injected with 1×10<sup>6</sup> iPSC-MSCs on day-21 alone or on day-21 and day-28 and left until day-35 post-injury. Measures of lung inflammation, fibrosis and compliance were then evaluated. BLM-injured mice presented with lung inflammation characterised by increased immune cell infiltration and increased pro-inflammatory cytokine expression, epithelial damage, lung transforming growth factor (TGF)-β1 activity, myofibroblast differentiation, interstitial collagen fibre deposition and topology (fibrosis), in conjunction with reduced matrix metalloproteinase (MMP)-to-tissue inhibitor of metalloproteinase (TIMP) ratios and dynamic lung compliance. All these measures were ameliorated by a single or once-weekly intravenous-administration of iPSC-MSCs, with the latter reducing dendritic cell infiltration and lung epithelial damage, whilst promoting anti-inflammatory interleukin (IL)-10 levels to a greater extent. Proteomic profiling of the conditioned media of cultured iPSC-MSCs that were stimulated with TNF-α and IFN-γ, revealed that these stem cells secreted protein levels of immunosuppressive factors that contributed to the anti-fibrotic and therapeutic potential of iPSCs-MSCs as a novel treatment option for IPF.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"178 ","pages":"117259"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biopha.2024.117259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterised by lung scarring and stiffening, for which there is no effective cure. Based on the immunomodulatory and anti-fibrotic effects of induced pluripotent stem cell (iPSC) and mesenchymoangioblast-derived mesenchymal stem cells (iPSCs-MSCs), this study evaluated the therapeutic effects of iPSCs-MSCs in a bleomycin (BLM)-induced model of pulmonary fibrosis. Adult male C57BL/6 mice received a double administration of BLM (0.15 mg/day) 7-days apart and were then maintained for a further 28-days (until day-35), whilst control mice were administered saline 7-days apart and maintained for the same time-period. Sub-groups of BLM-injured mice were intravenously-injected with 1×106 iPSC-MSCs on day-21 alone or on day-21 and day-28 and left until day-35 post-injury. Measures of lung inflammation, fibrosis and compliance were then evaluated. BLM-injured mice presented with lung inflammation characterised by increased immune cell infiltration and increased pro-inflammatory cytokine expression, epithelial damage, lung transforming growth factor (TGF)-β1 activity, myofibroblast differentiation, interstitial collagen fibre deposition and topology (fibrosis), in conjunction with reduced matrix metalloproteinase (MMP)-to-tissue inhibitor of metalloproteinase (TIMP) ratios and dynamic lung compliance. All these measures were ameliorated by a single or once-weekly intravenous-administration of iPSC-MSCs, with the latter reducing dendritic cell infiltration and lung epithelial damage, whilst promoting anti-inflammatory interleukin (IL)-10 levels to a greater extent. Proteomic profiling of the conditioned media of cultured iPSC-MSCs that were stimulated with TNF-α and IFN-γ, revealed that these stem cells secreted protein levels of immunosuppressive factors that contributed to the anti-fibrotic and therapeutic potential of iPSCs-MSCs as a novel treatment option for IPF.