Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan He, Hui Xue, Shibao Zheng
{"title":"A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking","authors":"Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan He, Hui Xue, Shibao Zheng","doi":"10.1007/s11263-024-02196-3","DOIUrl":null,"url":null,"abstract":"<p>The robustness of deep neural networks is frequently compromised when faced with adversarial examples, common corruptions, and distribution shifts, posing a significant research challenge in the advancement of deep learning. Although new deep learning methods and robustness improvement techniques have been constantly proposed, the robustness evaluations of existing methods are often inadequate due to their rapid development, diverse noise patterns, and simple evaluation metrics. Without thorough robustness evaluations, it is hard to understand the advances in the field and identify the effective methods. In this paper, we establish a comprehensive robustness benchmark called <b>ARES-Bench</b> on the image classification task. In our benchmark, we evaluate the robustness of 61 typical deep learning models on ImageNet with diverse architectures (e.g., CNNs, Transformers) and learning algorithms (e.g., normal supervised training, pre-training, adversarial training) under numerous adversarial attacks and out-of-distribution (OOD) datasets. Using robustness curves as the major evaluation criteria, we conduct large-scale experiments and draw several important findings, including: (1) there exists an intrinsic trade-off between the adversarial and natural robustness of specific noise types for the same model architecture; (2) adversarial training effectively improves adversarial robustness, especially when performed on Transformer architectures; (3) pre-training significantly enhances natural robustness by leveraging larger training datasets, incorporating multi-modal data, or employing self-supervised learning techniques. Based on ARES-Bench, we further analyze the training tricks in large-scale adversarial training on ImageNet. Through tailored training settings, we achieve a new state-of-the-art in adversarial robustness. We have made the benchmarking results and code platform publicly available.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"55 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02196-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The robustness of deep neural networks is frequently compromised when faced with adversarial examples, common corruptions, and distribution shifts, posing a significant research challenge in the advancement of deep learning. Although new deep learning methods and robustness improvement techniques have been constantly proposed, the robustness evaluations of existing methods are often inadequate due to their rapid development, diverse noise patterns, and simple evaluation metrics. Without thorough robustness evaluations, it is hard to understand the advances in the field and identify the effective methods. In this paper, we establish a comprehensive robustness benchmark called ARES-Bench on the image classification task. In our benchmark, we evaluate the robustness of 61 typical deep learning models on ImageNet with diverse architectures (e.g., CNNs, Transformers) and learning algorithms (e.g., normal supervised training, pre-training, adversarial training) under numerous adversarial attacks and out-of-distribution (OOD) datasets. Using robustness curves as the major evaluation criteria, we conduct large-scale experiments and draw several important findings, including: (1) there exists an intrinsic trade-off between the adversarial and natural robustness of specific noise types for the same model architecture; (2) adversarial training effectively improves adversarial robustness, especially when performed on Transformer architectures; (3) pre-training significantly enhances natural robustness by leveraging larger training datasets, incorporating multi-modal data, or employing self-supervised learning techniques. Based on ARES-Bench, we further analyze the training tricks in large-scale adversarial training on ImageNet. Through tailored training settings, we achieve a new state-of-the-art in adversarial robustness. We have made the benchmarking results and code platform publicly available.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.