Business News and Business Cycles

IF 7.6 1区 经济学 Q1 BUSINESS, FINANCE Journal of Finance Pub Date : 2024-08-09 DOI:10.1111/jofi.13377
LELAND BYBEE, BRYAN KELLY, ASAF MANELA, DACHENG XIU
{"title":"Business News and Business Cycles","authors":"LELAND BYBEE,&nbsp;BRYAN KELLY,&nbsp;ASAF MANELA,&nbsp;DACHENG XIU","doi":"10.1111/jofi.13377","DOIUrl":null,"url":null,"abstract":"<p>We propose an approach to measuring the state of the economy via textual analysis of business news. From the full text of 800,000 <i>Wall Street Journal</i> articles for 1984 to 2017, we estimate a topic model that summarizes business news into interpretable topical themes and quantifies the proportion of news attention allocated to each theme over time. News attention closely tracks a wide range of economic activities and can forecast aggregate stock market returns. A text-augmented vector autoregression demonstrates the large incremental role of news text in forecasting macroeconomic dynamics. We retrieve the narratives that underlie these improvements in market and business cycle forecasts.</p>","PeriodicalId":15753,"journal":{"name":"Journal of Finance","volume":"79 5","pages":"3105-3147"},"PeriodicalIF":7.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jofi.13377","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jofi.13377","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an approach to measuring the state of the economy via textual analysis of business news. From the full text of 800,000 Wall Street Journal articles for 1984 to 2017, we estimate a topic model that summarizes business news into interpretable topical themes and quantifies the proportion of news attention allocated to each theme over time. News attention closely tracks a wide range of economic activities and can forecast aggregate stock market returns. A text-augmented vector autoregression demonstrates the large incremental role of news text in forecasting macroeconomic dynamics. We retrieve the narratives that underlie these improvements in market and business cycle forecasts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商业新闻和商业周期
我们提出了一种通过商业新闻文本分析来衡量经济状况的方法。我们从《华尔街日报》1984 年至 2017 年的 80 万篇文章全文中估算出一个主题模型,该模型将商业新闻概括为可解释的主题,并量化了随着时间推移分配给每个主题的新闻关注比例。新闻关注密切跟踪各种经济活动,并能预测股市的总体回报。文本增强向量自回归证明了新闻文本在预测宏观经济动态方面的巨大增量作用。我们检索了市场和商业周期预测得以改善的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Finance
Journal of Finance Multiple-
CiteScore
12.90
自引率
2.50%
发文量
88
期刊介绍: The Journal of Finance is a renowned publication that disseminates cutting-edge research across all major fields of financial inquiry. Widely regarded as the most cited academic journal in finance, each issue reaches over 8,000 academics, finance professionals, libraries, government entities, and financial institutions worldwide. Published bi-monthly, the journal serves as the official publication of The American Finance Association, the premier academic organization dedicated to advancing knowledge and understanding in financial economics. Join us in exploring the forefront of financial research and scholarship.
期刊最新文献
The Global Credit Spread Puzzle Bank Funding Risk, Reference Rates, and Credit Supply The Disappearing Index Effect Decentralized Exchange: The Uniswap Automated Market Maker Test Assets and Weak Factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1