Xiangyan Zhang , Zhong Jiang , Hong Yang , Yadong Mo , Linkun Zhou , Ying Zhang , Jian Li , Shimin Wei
{"title":"DMWMNet: A novel dual-branch multi-level convolutional network for high-performance mixed-type wafer map defect detection in semiconductor manufacturing","authors":"Xiangyan Zhang , Zhong Jiang , Hong Yang , Yadong Mo , Linkun Zhou , Ying Zhang , Jian Li , Shimin Wei","doi":"10.1016/j.compind.2024.104136","DOIUrl":null,"url":null,"abstract":"<div><p>Wafer map defect detection plays an important role in semiconductor manufacturing by identifying root causes and accelerating process adjustments to ensure product quality and reduce unnecessary expenditures. However, existing methods have some limitations, such as low accuracy in mixed-type defect detection and poor recognition of similar defects and weak features. In this article, a novel dual-branch multi-level convolutional network (DMWMNet) is proposed for high-performance mixed-type wafer map defect detection. By fully considering the interrelationships between basic defects, defect number, and defect type, the network is designed to include two efficient parallel Branches and a Fusion classifier. Detecting defect types using basic defect discrimination and defect number detection is helpful for ameliorating problems with high complexity and low accuracy caused by multiple defect categories and feature overlaps. Furthermore, a composite loss function based on focal loss is employed to improve the network’s capacity to recognize weak features and similar defects. Experimental results on the MixedWM38 dataset show that DMWMNet has favorable mixed-type defect detection performance compared to other methods, with accuracy, precision, recall, F1 score, and MCC of 98.99%, 98.94%, 99.03%, 98.98%, and 98.97%, respectively.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"161 ","pages":"Article 104136"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524000642","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Wafer map defect detection plays an important role in semiconductor manufacturing by identifying root causes and accelerating process adjustments to ensure product quality and reduce unnecessary expenditures. However, existing methods have some limitations, such as low accuracy in mixed-type defect detection and poor recognition of similar defects and weak features. In this article, a novel dual-branch multi-level convolutional network (DMWMNet) is proposed for high-performance mixed-type wafer map defect detection. By fully considering the interrelationships between basic defects, defect number, and defect type, the network is designed to include two efficient parallel Branches and a Fusion classifier. Detecting defect types using basic defect discrimination and defect number detection is helpful for ameliorating problems with high complexity and low accuracy caused by multiple defect categories and feature overlaps. Furthermore, a composite loss function based on focal loss is employed to improve the network’s capacity to recognize weak features and similar defects. Experimental results on the MixedWM38 dataset show that DMWMNet has favorable mixed-type defect detection performance compared to other methods, with accuracy, precision, recall, F1 score, and MCC of 98.99%, 98.94%, 99.03%, 98.98%, and 98.97%, respectively.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.