Efficient AMG reduction-based preconditioners for structural mechanics

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-08-07 DOI:10.1016/j.cma.2024.117249
{"title":"Efficient AMG reduction-based preconditioners for structural mechanics","authors":"","doi":"10.1016/j.cma.2024.117249","DOIUrl":null,"url":null,"abstract":"<div><p>Structural problems play a critical role in many areas of science and engineering. Their efficient and accurate solution is essential for designing and optimising civil engineering, aerospace, and materials science applications, to name a few. When appropriately tuned, Algebraic Multigrid (AMG) methods exhibit a convergence that is independent of the problem size, making them the preferred option for solving structural problems. Nevertheless, AMG faces several computational challenges, including its remarkable memory footprint, costly setup, and the relatively low arithmetic intensity of the sparse linear algebra operations. This work presents AMGR, an enhanced variant of AMG that mitigates such limitations. Its name arises from the AMG reduction framework it introduces, and its flexibility allows for leveraging several features that are common in structural problems. Namely, periodicities, spatial symmetries, and localised non-linearities. For such cases, we show how to reduce the memory footprint and setup costs of the standard AMG, as well as increase its arithmetic intensity. Despite being lighter than the standard AMG, AMGR exhibits comparable scalability and convergence rates. Numerical experiments on several industrial applications prove AMGR’s effectiveness, resulting in up to 3.7x overall speed-ups compared to the standard AMG.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S004578252400505X/pdfft?md5=a844c03a22df788579dd45582a3d842a&pid=1-s2.0-S004578252400505X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252400505X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Structural problems play a critical role in many areas of science and engineering. Their efficient and accurate solution is essential for designing and optimising civil engineering, aerospace, and materials science applications, to name a few. When appropriately tuned, Algebraic Multigrid (AMG) methods exhibit a convergence that is independent of the problem size, making them the preferred option for solving structural problems. Nevertheless, AMG faces several computational challenges, including its remarkable memory footprint, costly setup, and the relatively low arithmetic intensity of the sparse linear algebra operations. This work presents AMGR, an enhanced variant of AMG that mitigates such limitations. Its name arises from the AMG reduction framework it introduces, and its flexibility allows for leveraging several features that are common in structural problems. Namely, periodicities, spatial symmetries, and localised non-linearities. For such cases, we show how to reduce the memory footprint and setup costs of the standard AMG, as well as increase its arithmetic intensity. Despite being lighter than the standard AMG, AMGR exhibits comparable scalability and convergence rates. Numerical experiments on several industrial applications prove AMGR’s effectiveness, resulting in up to 3.7x overall speed-ups compared to the standard AMG.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AMG还原的高效结构力学预调器
结构问题在科学和工程学的许多领域都起着至关重要的作用。高效、准确地解决结构问题对于设计和优化土木工程、航空航天和材料科学应用等至关重要。如果调整得当,代数多网格(AMG)方法的收敛性与问题大小无关,因此成为解决结构问题的首选。然而,AMG 在计算上面临着一些挑战,包括显著的内存占用、昂贵的设置以及稀疏线性代数运算相对较低的算术强度。本研究提出了 AMGR,它是 AMG 的一个增强变体,可减轻这些限制。AMGR 的名称源于它所引入的 AMG 简化框架,其灵活性允许利用结构问题中常见的几个特征。即周期性、空间对称性和局部非线性。针对这些情况,我们展示了如何减少标准 AMG 的内存占用和设置成本,并提高其运算强度。尽管 AMGR 比标准 AMG 更轻,但其可扩展性和收敛速度却不相上下。几个工业应用的数值实验证明了 AMGR 的有效性,与标准 AMG 相比,AMGR 的整体速度提高了 3.7 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Peridynamic modelling of time-dependent behaviour and creep damage in hyper-viscoelastic solids with pre-cracks Modeling pulmonary perfusion and gas exchange in alveolar microstructures Data-driven projection pursuit adaptation of polynomial chaos expansions for dependent high-dimensional parameters A novel global prediction framework for multi-response models in reliability engineering using adaptive sampling and active subspace methods Modeling via peridynamics for damage and failure of hyperelastic composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1