Non-empirical peak shape methods based on the physical model of the one trap one recombination center model

IF 1.6 3区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR Applied Radiation and Isotopes Pub Date : 2024-08-03 DOI:10.1016/j.apradiso.2024.111463
{"title":"Non-empirical peak shape methods based on the physical model of the one trap one recombination center model","authors":"","doi":"10.1016/j.apradiso.2024.111463","DOIUrl":null,"url":null,"abstract":"<div><p>Any experimental Thermoluminescent (TL) glow-peak contains the activation energy information of its corresponding energy level within the band gap in insulating materials. The theory of peak shape methods (PSM) correlates the macroscopic geometrical characteristics of a single TL peak with activation energy of the level responsible for the TL peak by assuming that the area under a TL peak can be approximated by the area of a triangle. In this way the geometrical characteristics becomes the measure of the activation energy. In the present work new PSM expressions are derived, which are not empirical as the existing ones but are based of the physical model of one trap one recombination (OTOR) center. Three cases are considered. (I) Delocalized OTOR for re-trapping probability smaller than the recombination probability. (II) Delocalized OTOR for re-trapping probability greater than recombination probability. (III) Localized transitions OTOR model. The system of differential equations of each case model were solved analytically using the Lambert <span><math><mi>W</mi></math></span> function (or equivalently the Wright <span><math><mi>ω</mi></math></span> function). Then the resulted analytical expressions of TL intensity as a function of temperature were used to derive new PSM. The new PSM from all cases are formally exactly the same, having, however, strong differentiation in their coefficients. The functionality of the new expressions is tested and its comparison with pre-existing PSM is performed.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804324002914","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Any experimental Thermoluminescent (TL) glow-peak contains the activation energy information of its corresponding energy level within the band gap in insulating materials. The theory of peak shape methods (PSM) correlates the macroscopic geometrical characteristics of a single TL peak with activation energy of the level responsible for the TL peak by assuming that the area under a TL peak can be approximated by the area of a triangle. In this way the geometrical characteristics becomes the measure of the activation energy. In the present work new PSM expressions are derived, which are not empirical as the existing ones but are based of the physical model of one trap one recombination (OTOR) center. Three cases are considered. (I) Delocalized OTOR for re-trapping probability smaller than the recombination probability. (II) Delocalized OTOR for re-trapping probability greater than recombination probability. (III) Localized transitions OTOR model. The system of differential equations of each case model were solved analytically using the Lambert W function (or equivalently the Wright ω function). Then the resulted analytical expressions of TL intensity as a function of temperature were used to derive new PSM. The new PSM from all cases are formally exactly the same, having, however, strong differentiation in their coefficients. The functionality of the new expressions is tested and its comparison with pre-existing PSM is performed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于一阱一重组中心物理模型的非经验峰形方法。
任何实验性热释光(TL)辉光峰都包含绝缘材料带隙内相应能级的活化能信息。峰形方法(PSM)理论假定 TL 峰下的面积可以用三角形的面积来近似表示,从而将单个 TL 峰的宏观几何特征与产生 TL 峰的能级的活化能联系起来。这样,几何特征就成了活化能的量度。在本研究中,我们推导出了新的 PSM 表达式,它与现有的表达式不同,而是基于一个陷阱一个重组(OTOR)中心的物理模型。本文考虑了三种情况。(I) 重新俘获概率小于重组概率的去局部 OTOR。(II) 再捕获概率大于重组概率的局部 OTOR。(III) 局部过渡 OTOR 模型。利用兰伯特 W 函数(或等价于赖特 ω 函数)对每种情况模型的微分方程系统进行解析求解。然后,利用所得到的 TL 强度随温度变化的解析表达式推导出新的 PSM。所有情况下的新 PSM 在形式上完全相同,但在系数上有很大差异。我们对新表达式的功能进行了测试,并将其与已有的 PSM 进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Radiation and Isotopes
Applied Radiation and Isotopes 工程技术-核科学技术
CiteScore
3.00
自引率
12.50%
发文量
406
审稿时长
13.5 months
期刊介绍: Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.
期刊最新文献
Editorial Board Characterizing field sizes of the linear accelerator: Monte Carlo simulation in 6 MV SRS mode with GEANT4/GATE Assessment of radioactive nuclides and heavy metals in soil and drink water in Lahij city, Yemen 111Ag phantom images with Cerenkov Luminescence Imaging and digital autoradiography within the ISOLPHARM project Cross-sections for 43Sc, 44mSc, and 44gSc from two heavy ion reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1