Eri Seto , Shinichiro Kina , Reika Kawabata-Iwakawa , Makiko Suzuki , Yoko Onizuka , Junko Nakajima-Shimada
{"title":"Trypanosoma cruzi assembles host cytoplasmic processing bodies to evade the innate immune response","authors":"Eri Seto , Shinichiro Kina , Reika Kawabata-Iwakawa , Makiko Suzuki , Yoko Onizuka , Junko Nakajima-Shimada","doi":"10.1016/j.bbagen.2024.130686","DOIUrl":null,"url":null,"abstract":"<div><p>Processing bodies (P-bodies, PBs) are cytoplasmic foci formed by condensation of translationally inactivated messenger ribonucleoprotein particles (mRNPs). Infection with the protozoan parasite <em>Trypanosoma cruzi</em> (<em>T. cruzi</em>) promotes PB accumulation in host cells, suggesting their involvement in host mRNA metabolism during parasite infection.</p><p>To identify PB-regulated mRNA targets during <em>T. cruzi</em> infection, we established a PB-defective human fibrosarcoma cell line by knocking out the enhancer of mRNA decapping 4 (EDC4), an essential component of PB assembly. Next-generation sequencing was used to establish transcriptome profiles for wild-type (WT) and EDC4 knockout (KO) cells infected with <em>T. cruzi</em> for 0, 3, and 24 h. Ingenuity pathway analysis based on the differentially expressed genes revealed that PB depletion increased the activation of several signaling pathways involved in the innate immune response. The proinflammatory cytokine IL-1β was significantly upregulated following infection of PB-deficient KO cells, but not in WT cells, at the mRNA and protein levels. Furthermore, the rescue of PB assembly in KO cells by GFP-tagged wild-type EDC4 (+WT) suppressed IL-1β expression, whereas KO cells with the C-terminal-deleted mutant EDC4 (+Δ) failed to rescue PB assembly and downregulate IL-1β production. Our results suggest that <em>T. cruzi</em> assembles host PBs to counteract antiparasitic innate immunity.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304416524001296/pdfft?md5=0ff1b71050efb9cc7cba0ce4ef146494&pid=1-s2.0-S0304416524001296-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416524001296","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Processing bodies (P-bodies, PBs) are cytoplasmic foci formed by condensation of translationally inactivated messenger ribonucleoprotein particles (mRNPs). Infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) promotes PB accumulation in host cells, suggesting their involvement in host mRNA metabolism during parasite infection.
To identify PB-regulated mRNA targets during T. cruzi infection, we established a PB-defective human fibrosarcoma cell line by knocking out the enhancer of mRNA decapping 4 (EDC4), an essential component of PB assembly. Next-generation sequencing was used to establish transcriptome profiles for wild-type (WT) and EDC4 knockout (KO) cells infected with T. cruzi for 0, 3, and 24 h. Ingenuity pathway analysis based on the differentially expressed genes revealed that PB depletion increased the activation of several signaling pathways involved in the innate immune response. The proinflammatory cytokine IL-1β was significantly upregulated following infection of PB-deficient KO cells, but not in WT cells, at the mRNA and protein levels. Furthermore, the rescue of PB assembly in KO cells by GFP-tagged wild-type EDC4 (+WT) suppressed IL-1β expression, whereas KO cells with the C-terminal-deleted mutant EDC4 (+Δ) failed to rescue PB assembly and downregulate IL-1β production. Our results suggest that T. cruzi assembles host PBs to counteract antiparasitic innate immunity.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.