Sevoflurane Affects Myocardial Autophagy Levels After Myocardial Ischemia Reperfusion Injury via the microRNA-542-3p/ADAM9 Axis.

IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Toxicology Pub Date : 2024-08-10 DOI:10.1007/s12012-024-09908-8
Jiying Ao, Xueting Zhang, Degang Zhu
{"title":"Sevoflurane Affects Myocardial Autophagy Levels After Myocardial Ischemia Reperfusion Injury via the microRNA-542-3p/ADAM9 Axis.","authors":"Jiying Ao, Xueting Zhang, Degang Zhu","doi":"10.1007/s12012-024-09908-8","DOIUrl":null,"url":null,"abstract":"<p><p>This research focused on investigating the effects of sevoflurane (Sev) on myocardial autophagy levels after myocardial ischemia reperfusion (I/R) injury via the microRNA-542-3p (miR-542-3p)/ADAM9 axis. Mice underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by echocardiography. Cardiac markers and oxidative stress factors were evaluated by ELISA. Autophagy-associated factors were detected by western blot. Relationship between miR-542-3p and ADAM9 was tested by dual-luciferase reporter gene assay, RT-qPCR, and western blot. Sev treatment ameliorated cardiac dysfunction, myocardial oxidative stress, and histopathological damages, decreased myocardial infarction size and myocardial apoptotic cells after myocardial I/R injury. Sev treatment elevated miR-542-3p expression and decreased ADAM9 expression in myocardial tissues after myocardial I/R injury. miR-542-3p overexpression could enhance the ameliorative effects of Sev on myocardial injury and myocardial autophagy in I/R mice. miR-542-3p targeted and negatively regulated ADAM9 expression. ADAM9 overexpression reversed the ameliorative effects of miR-542-3p up-regulation on myocardial injury and myocardial autophagy in Sev-treated I/R mice. Sev treatment could ameliorate myocardial injury and myocardial autophagy in I/R mice, mediated by mechanisms that include miR-542-3p up-regulation and ADAM9 down-regulation.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-024-09908-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This research focused on investigating the effects of sevoflurane (Sev) on myocardial autophagy levels after myocardial ischemia reperfusion (I/R) injury via the microRNA-542-3p (miR-542-3p)/ADAM9 axis. Mice underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by echocardiography. Cardiac markers and oxidative stress factors were evaluated by ELISA. Autophagy-associated factors were detected by western blot. Relationship between miR-542-3p and ADAM9 was tested by dual-luciferase reporter gene assay, RT-qPCR, and western blot. Sev treatment ameliorated cardiac dysfunction, myocardial oxidative stress, and histopathological damages, decreased myocardial infarction size and myocardial apoptotic cells after myocardial I/R injury. Sev treatment elevated miR-542-3p expression and decreased ADAM9 expression in myocardial tissues after myocardial I/R injury. miR-542-3p overexpression could enhance the ameliorative effects of Sev on myocardial injury and myocardial autophagy in I/R mice. miR-542-3p targeted and negatively regulated ADAM9 expression. ADAM9 overexpression reversed the ameliorative effects of miR-542-3p up-regulation on myocardial injury and myocardial autophagy in Sev-treated I/R mice. Sev treatment could ameliorate myocardial injury and myocardial autophagy in I/R mice, mediated by mechanisms that include miR-542-3p up-regulation and ADAM9 down-regulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
七氟醚通过 microRNA-542-3p/ADAM9 轴影响心肌缺血再灌注损伤后的心肌自噬水平
本研究主要探讨七氟醚(Sev)通过microRNA-542-3p(miR-542-3p)/ADAM9轴对心肌缺血再灌注(I/R)损伤后心肌自噬水平的影响。小鼠左前降支冠状动脉(LAD)闭塞30分钟,然后再灌注2小时。通过 2,3,5-三苯基氯化四氮唑(TTC)染色确定心肌梗死。通过超声心动图检查心脏功能。心脏标志物和氧化应激因子通过 ELISA 进行评估。自噬相关因子通过 Western 印迹进行检测。通过双荧光素酶报告基因测定、RT-qPCR和Western印迹检测了miR-542-3p与ADAM9之间的关系。Sev治疗可改善心肌I/R损伤后的心功能不全、心肌氧化应激和组织病理学损伤,减少心肌梗死面积和心肌细胞凋亡。miR-542-3p 靶向负调控 ADAM9 的表达。ADAM9 的过表达逆转了 miR-542-3p 上调对 Sev 处理的 I/R 小鼠心肌损伤和心肌自噬的改善作用。Sev治疗可改善I/R小鼠的心肌损伤和心肌自噬,其机制包括miR-542-3p上调和ADAM9下调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular Toxicology
Cardiovascular Toxicology 医学-毒理学
CiteScore
6.60
自引率
3.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.
期刊最新文献
The Worsening of Myocardial Ischemia–Reperfusion Injury in Uremic Cardiomyopathy is Further Aggravated by PM2.5 Exposure: Mitochondria Serve as the Central Focus of Pathology Steroid-Refractory Myocarditis Induced by Immune Checkpoint Inhibitor Responded to Infliximab: Report of Two Cases and Literature Review Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis. TRAF3IP3 Blocks Mitophagy to Exacerbate Myocardial Injury Induced by Ischemia-Reperfusion. High Mobility Group Box 1 and Cardiovascular Diseases: Study of Act and Connect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1