Effect of size and pH-sensitivity of liposomes on cellular uptake pathways and pharmacokinetics of encapsulated gemcitabine.

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Liposome Research Pub Date : 2024-08-09 DOI:10.1080/08982104.2024.2389969
Mingtan Tang, Sasi Bhushan Yarragudi, Patrick Pan, Kaiyun Yang, Manju Kanamala, Zimei Wu
{"title":"Effect of size and pH-sensitivity of liposomes on cellular uptake pathways and pharmacokinetics of encapsulated gemcitabine.","authors":"Mingtan Tang, Sasi Bhushan Yarragudi, Patrick Pan, Kaiyun Yang, Manju Kanamala, Zimei Wu","doi":"10.1080/08982104.2024.2389969","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance cytoplasmic delivery efficiency, pH-sensitive liposomes (PSL) have been proposed as a novel strategy. To facilitate clinical translation, this study aims to understand the impact of both size and pH-sensitivity on cellular uptake pathways, intracellular trafficking and pharmacokinetics of liposomes. The large liposomes (130-160 nm) were prepared using thin-film hydration method, while small liposomes (∼60 nm) were fabricated using microfluidics, for both PSL and non-pH-sensitive liposomes (NPSL). Cellular uptake pathways and intracellular trafficking was investigated through confocal imaging with aid of various endocytosis inhibitors. Intracellular gemcitabine delivery by various liposomal formulations was quantified using HPLC, and the cytotoxicity was assessed via cell viability assays. Pharmacokinetics of gemcitabine loaded in various liposomes was evaluated in rats following intravenous administration. Larger liposomes had a higher loading capacity for hydrophilic gemcitabine (7% vs 4%). Small PSL exhibited superior cellular uptake compared to large PSL or NPSLs. Moreover, the alkalization of endosomes significantly attenuated the cellular uptake of PSL. Large liposomes (PSL and NPSL) predominantly entered cells via clathrin-dependent pathway, whereas small liposomes partially utilized caveolae-dependent pathway. However, the long circulation of the liposomes, as measured by the encapsulated gemcitabine, was compromised by both pH-sensitivity and size reduction (9.5 h vs 5.3 h). Despite this drawback, our results indicate that small PSL holds promise as vectors for the next generation of liposomal nanomedicine, owing to their superior cytoplasmic delivery efficiency.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2024.2389969","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance cytoplasmic delivery efficiency, pH-sensitive liposomes (PSL) have been proposed as a novel strategy. To facilitate clinical translation, this study aims to understand the impact of both size and pH-sensitivity on cellular uptake pathways, intracellular trafficking and pharmacokinetics of liposomes. The large liposomes (130-160 nm) were prepared using thin-film hydration method, while small liposomes (∼60 nm) were fabricated using microfluidics, for both PSL and non-pH-sensitive liposomes (NPSL). Cellular uptake pathways and intracellular trafficking was investigated through confocal imaging with aid of various endocytosis inhibitors. Intracellular gemcitabine delivery by various liposomal formulations was quantified using HPLC, and the cytotoxicity was assessed via cell viability assays. Pharmacokinetics of gemcitabine loaded in various liposomes was evaluated in rats following intravenous administration. Larger liposomes had a higher loading capacity for hydrophilic gemcitabine (7% vs 4%). Small PSL exhibited superior cellular uptake compared to large PSL or NPSLs. Moreover, the alkalization of endosomes significantly attenuated the cellular uptake of PSL. Large liposomes (PSL and NPSL) predominantly entered cells via clathrin-dependent pathway, whereas small liposomes partially utilized caveolae-dependent pathway. However, the long circulation of the liposomes, as measured by the encapsulated gemcitabine, was compromised by both pH-sensitivity and size reduction (9.5 h vs 5.3 h). Despite this drawback, our results indicate that small PSL holds promise as vectors for the next generation of liposomal nanomedicine, owing to their superior cytoplasmic delivery efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂质体的大小和 pH 敏感性对包裹吉西他滨的细胞摄取途径和药代动力学的影响
为了提高细胞质递送效率,人们提出了对 pH 值敏感的脂质体(PSL)这一新策略。为促进临床转化,本研究旨在了解脂质体的大小和pH敏感性对细胞摄取途径、细胞内转运和药代动力学的影响。大脂质体(130-160 nm)采用薄膜水合法制备,而小脂质体(60 nm)则采用微流控技术制备。在各种内吞抑制剂的帮助下,通过共焦成像研究了细胞摄取途径和细胞内贩运。采用高效液相色谱法对各种脂质体制剂在细胞内输送吉西他滨的情况进行了量化,并通过细胞活力测定评估了细胞毒性。在大鼠体内静脉注射各种脂质体后,评估了载入各种脂质体的吉西他滨的药代动力学。较大的脂质体对亲水性吉西他滨的负载能力更高(7% 对 4%)。与大型 PSL 或 NPSL 相比,小型 PSL 的细胞吸收能力更强。此外,内质体的碱化能显著降低细胞对 PSL 的吸收。大脂质体(PSL和NPSL)主要通过凝胶酶依赖途径进入细胞,而小脂质体则部分利用洞穴依赖途径。不过,由于对 pH 值敏感和体积缩小(9.5 小时对 5.3 小时),脂质体的长循环能力(以封装的吉西他滨衡量)受到了影响。尽管存在这一缺陷,但我们的研究结果表明,小型 PSL 因其卓越的细胞质递送效率,有望成为下一代脂质体纳米药物的载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
期刊最新文献
Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A2. Comparison of free vs. liposomal naringenin in white adipose tissue browning in C57BL/6j mice A comparative study of sensitizers and liposome composition in radiation-induced controlled drug release for cancer therapy. Design and preparation of pH-sensitive cytotoxic liposomal formulations containing antitumor colchicine analogues for target release. Impact of micelle characteristics on cholesterol absorption and ezetimibe inhibition: Insights from Niemann-Pick C1-like 1 binding and molecular structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1