{"title":"Adaptive Multiple Comparisons With the Best","authors":"Haoyu Chen, Werner Brannath, Andreas Futschik","doi":"10.1002/bimj.202300242","DOIUrl":null,"url":null,"abstract":"<p>Subset selection methods aim to choose a nonempty subset of populations including a best population with some prespecified probability. An example application involves location parameters that quantify yields in agriculture to select the best wheat variety. This is quite different from variable selection problems, for instance, in regression.</p><p>Unfortunately, subset selection methods can become very conservative when the parameter configuration is not least favorable. This will lead to a selection of many non-best populations, making the set of selected populations less informative. To solve this issue, we propose less conservative adaptive approaches based on estimating the number of best populations. We also discuss variants of our adaptive approaches that are applicable when the sample sizes and/or variances differ between populations. Using simulations, we show that our methods yield a desirable performance. As an illustration of potential gains, we apply them to two real datasets, one on the yield of wheat varieties and the other obtained via genome sequencing of repeated samples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300242","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300242","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Subset selection methods aim to choose a nonempty subset of populations including a best population with some prespecified probability. An example application involves location parameters that quantify yields in agriculture to select the best wheat variety. This is quite different from variable selection problems, for instance, in regression.
Unfortunately, subset selection methods can become very conservative when the parameter configuration is not least favorable. This will lead to a selection of many non-best populations, making the set of selected populations less informative. To solve this issue, we propose less conservative adaptive approaches based on estimating the number of best populations. We also discuss variants of our adaptive approaches that are applicable when the sample sizes and/or variances differ between populations. Using simulations, we show that our methods yield a desirable performance. As an illustration of potential gains, we apply them to two real datasets, one on the yield of wheat varieties and the other obtained via genome sequencing of repeated samples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.