SPP1 promotes the polarization of M2 macrophages through the Jak2/Stat3 signaling pathway and accelerates the progression of idiopathic pulmonary fibrosis.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-01 Epub Date: 2024-08-12 DOI:10.3892/ijmm.2024.5413
Xuelian Yang, Ziqin Liu, Jiawei Zhou, Jianqiang Guo, Tao Han, Yafeng Liu, Yunyun Li, Ying Bai, Yingru Xing, Jing Wu, Dong Hu
{"title":"SPP1 promotes the polarization of M2 macrophages through the Jak2/Stat3 signaling pathway and accelerates the progression of idiopathic pulmonary fibrosis.","authors":"Xuelian Yang, Ziqin Liu, Jiawei Zhou, Jianqiang Guo, Tao Han, Yafeng Liu, Yunyun Li, Ying Bai, Yingru Xing, Jing Wu, Dong Hu","doi":"10.3892/ijmm.2024.5413","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a fatal pulmonary disease that requires further investigation to understand its pathogenesis. The present study demonstrated that secreted phosphoprotein 1 (SPP1) was aberrantly highly expressed in the lung tissue of patients with IPF and was significantly positively associated with macrophage and T‑cell activity. Cell localization studies revealed that SPP1 was primarily overexpressed in macrophages, rather than in T cells. Functionally, knocking down SPP1 expression <i>in vitro</i> inhibited the secretion of fibrosis‑related factors and M2 polarization in macrophages. Furthermore, knocking down SPP1 expression inhibited the macrophage‑induced epithelial‑to‑mesenchymal transition in both epithelial and fibroblastic cells. Treatment with SPP1 inhibitors <i>in vivo</i> enhanced lung function and ameliorated pulmonary fibrosis. Mechanistically, SPP1 appears to promote macrophage M2 polarization by regulating the JAK/STAT3 signaling pathway both <i>in vitro</i> and <i>in vivo</i>. In summary, the present study found that SPP1 promotes M2 polarization of macrophages through the JAK2/STAT3 signaling pathway, thereby accelerating the progression of IPF. Inhibition of SPP1 expression <i>in vivo</i> can effectively alleviate the development of IPF, indicating that SPP1 in macrophages may be a potential therapeutic target for IPF.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2024.5413","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal pulmonary disease that requires further investigation to understand its pathogenesis. The present study demonstrated that secreted phosphoprotein 1 (SPP1) was aberrantly highly expressed in the lung tissue of patients with IPF and was significantly positively associated with macrophage and T‑cell activity. Cell localization studies revealed that SPP1 was primarily overexpressed in macrophages, rather than in T cells. Functionally, knocking down SPP1 expression in vitro inhibited the secretion of fibrosis‑related factors and M2 polarization in macrophages. Furthermore, knocking down SPP1 expression inhibited the macrophage‑induced epithelial‑to‑mesenchymal transition in both epithelial and fibroblastic cells. Treatment with SPP1 inhibitors in vivo enhanced lung function and ameliorated pulmonary fibrosis. Mechanistically, SPP1 appears to promote macrophage M2 polarization by regulating the JAK/STAT3 signaling pathway both in vitro and in vivo. In summary, the present study found that SPP1 promotes M2 polarization of macrophages through the JAK2/STAT3 signaling pathway, thereby accelerating the progression of IPF. Inhibition of SPP1 expression in vivo can effectively alleviate the development of IPF, indicating that SPP1 in macrophages may be a potential therapeutic target for IPF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPP1 通过 Jak2/Stat3 信号通路促进 M2 巨噬细胞的极化,并加速特发性肺纤维化的进展。
特发性肺纤维化(IPF)是一种致命的肺部疾病,需要进一步研究以了解其发病机制。本研究表明,分泌型磷蛋白1(SPP1)在IPF患者的肺组织中异常高表达,并与巨噬细胞和T细胞活性呈显著正相关。细胞定位研究显示,SPP1 主要在巨噬细胞而非 T 细胞中过度表达。从功能上讲,体外敲除 SPP1 的表达可抑制纤维化相关因子的分泌和巨噬细胞的 M2 极化。此外,在上皮细胞和成纤维细胞中,敲低 SPP1 的表达可抑制巨噬细胞诱导的上皮-间质转化。在体内使用 SPP1 抑制剂可增强肺功能并改善肺纤维化。从机理上讲,SPP1似乎通过调节体外和体内的JAK/STAT3信号通路来促进巨噬细胞M2极化。综上所述,本研究发现 SPP1 通过 JAK2/STAT3 信号通路促进巨噬细胞 M2 极化,从而加速 IPF 的进展。抑制 SPP1 在体内的表达可有效缓解 IPF 的发展,这表明巨噬细胞中的 SPP1 可能是 IPF 的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1