Effectiveness of Artificial Intelligence (AI) in Clinical Decision Support Systems and Care Delivery.

IF 3.5 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Journal of Medical Systems Pub Date : 2024-08-12 DOI:10.1007/s10916-024-02098-4
Khaled Ouanes, Nesren Farhah
{"title":"Effectiveness of Artificial Intelligence (AI) in Clinical Decision Support Systems and Care Delivery.","authors":"Khaled Ouanes, Nesren Farhah","doi":"10.1007/s10916-024-02098-4","DOIUrl":null,"url":null,"abstract":"<p><p>This review aims to assess the effectiveness of AI-driven CDSSs on patient outcomes and clinical practices. A comprehensive search was conducted across PubMed, MEDLINE, and Scopus. Studies published from January 2018 to November 2023 were eligible for inclusion. Following title and abstract screening, full-text articles were assessed for methodological quality and adherence to inclusion criteria. Data extraction focused on study design, AI technologies employed, reported outcomes, and evidence of AI-CDSS impact on patient and clinical outcomes. Thematic analysis was conducted to synthesise findings and identify key themes regarding the effectiveness of AI-CDSS. The screening of the articles resulted in the selection of 26 articles that satisfied the inclusion criteria. The content analysis revealed four themes: early detection and disease diagnosis, enhanced decision-making, medication errors, and clinicians' perspectives. AI-based CDSSs were found to improve clinical decision-making by providing patient-specific information and evidence-based recommendations. Using AI in CDSSs can potentially improve patient outcomes by enhancing diagnostic accuracy, optimising treatment selection, and reducing medical errors.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"48 1","pages":"74"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02098-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

This review aims to assess the effectiveness of AI-driven CDSSs on patient outcomes and clinical practices. A comprehensive search was conducted across PubMed, MEDLINE, and Scopus. Studies published from January 2018 to November 2023 were eligible for inclusion. Following title and abstract screening, full-text articles were assessed for methodological quality and adherence to inclusion criteria. Data extraction focused on study design, AI technologies employed, reported outcomes, and evidence of AI-CDSS impact on patient and clinical outcomes. Thematic analysis was conducted to synthesise findings and identify key themes regarding the effectiveness of AI-CDSS. The screening of the articles resulted in the selection of 26 articles that satisfied the inclusion criteria. The content analysis revealed four themes: early detection and disease diagnosis, enhanced decision-making, medication errors, and clinicians' perspectives. AI-based CDSSs were found to improve clinical decision-making by providing patient-specific information and evidence-based recommendations. Using AI in CDSSs can potentially improve patient outcomes by enhancing diagnostic accuracy, optimising treatment selection, and reducing medical errors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能(AI)在临床决策支持系统和护理服务中的有效性。
本综述旨在评估人工智能驱动的 CDSS 对患者预后和临床实践的有效性。我们在 PubMed、MEDLINE 和 Scopus 上进行了全面检索。2018年1月至2023年11月期间发表的研究符合纳入条件。在对标题和摘要进行筛选后,对全文进行了方法学质量和是否符合纳入标准的评估。数据提取的重点是研究设计、采用的人工智能技术、报告的结果以及人工智能-CDSS对患者和临床结果影响的证据。对研究结果进行了主题分析,并确定了有关 AI-CDSS 效果的关键主题。经过筛选,共有 26 篇文章符合纳入标准。内容分析揭示了四个主题:早期发现和疾病诊断、加强决策、用药错误和临床医生的观点。研究发现,基于人工智能的 CDSS 可通过提供患者特定信息和循证建议来改善临床决策。在 CDSS 中使用人工智能可提高诊断准确性、优化治疗选择并减少医疗失误,从而改善患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Systems
Journal of Medical Systems 医学-卫生保健
CiteScore
11.60
自引率
1.90%
发文量
83
审稿时长
4.8 months
期刊介绍: Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.
期刊最新文献
Garbage In, Garbage Out? Negative Impact of Physiological Waveform Artifacts in a Hospital Clinical Data Warehouse. 21st Century Cures Act and Information Blocking: How Have Different Specialties Responded? Self-Supervised Learning for Near-Wild Cognitive Workload Estimation. Electronic Health Records Sharing Based on Consortium Blockchain. Large Language Models in Healthcare: An Urgent Call for Ongoing, Rigorous Validation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1