Respiratory motion-corrected T1 mapping of the abdomen.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-08-01 Epub Date: 2024-08-12 DOI:10.1007/s10334-024-01196-1
Jana Huiyue Zhang, Tom Neumann, Tobias Schaeffter, Christoph Kolbitsch, Kirsten Miriam Kerkering
{"title":"Respiratory motion-corrected T1 mapping of the abdomen.","authors":"Jana Huiyue Zhang, Tom Neumann, Tobias Schaeffter, Christoph Kolbitsch, Kirsten Miriam Kerkering","doi":"10.1007/s10334-024-01196-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study was to investigate an approach for motion-corrected T1 mapping of the abdomen that allows for free breathing data acquisition with 100% scan efficiency.</p><p><strong>Materials and methods: </strong>Data were acquired using a continuous golden radial trajectory and multiple inversion pulses. For the correction of respiratory motion, motion estimation based on a surrogate was performed from the same data used for T1 mapping. Image-based self-navigation allowed for binning and reconstruction of respiratory-resolved images, which were used for the estimation of respiratory motion fields. Finally, motion-corrected T1 maps were calculated from the data applying the estimated motion fields. The method was evaluated in five healthy volunteers. For the assessment of the image-based navigator, we compared it to a simultaneously acquired ultrawide band radar signal. Motion-corrected T1 maps were evaluated qualitatively and quantitatively for different scan times.</p><p><strong>Results: </strong>For all volunteers, the motion-corrected T1 maps showed fewer motion artifacts in the liver as well as sharper kidney structures and blood vessels compared to uncorrected T1 maps. Moreover, the relative error to the reference breathhold T1 maps could be reduced from up to 25% for the uncorrected T1 maps to below 10% for the motion-corrected maps for the average value of a region of interest, while the scan time could be reduced to 6-8 s.</p><p><strong>Discussion: </strong>The proposed approach allows for respiratory motion-corrected T1 mapping in the abdomen and ensures accurate T1 maps without the need for any breathholds.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"637-649"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01196-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The purpose of this study was to investigate an approach for motion-corrected T1 mapping of the abdomen that allows for free breathing data acquisition with 100% scan efficiency.

Materials and methods: Data were acquired using a continuous golden radial trajectory and multiple inversion pulses. For the correction of respiratory motion, motion estimation based on a surrogate was performed from the same data used for T1 mapping. Image-based self-navigation allowed for binning and reconstruction of respiratory-resolved images, which were used for the estimation of respiratory motion fields. Finally, motion-corrected T1 maps were calculated from the data applying the estimated motion fields. The method was evaluated in five healthy volunteers. For the assessment of the image-based navigator, we compared it to a simultaneously acquired ultrawide band radar signal. Motion-corrected T1 maps were evaluated qualitatively and quantitatively for different scan times.

Results: For all volunteers, the motion-corrected T1 maps showed fewer motion artifacts in the liver as well as sharper kidney structures and blood vessels compared to uncorrected T1 maps. Moreover, the relative error to the reference breathhold T1 maps could be reduced from up to 25% for the uncorrected T1 maps to below 10% for the motion-corrected maps for the average value of a region of interest, while the scan time could be reduced to 6-8 s.

Discussion: The proposed approach allows for respiratory motion-corrected T1 mapping in the abdomen and ensures accurate T1 maps without the need for any breathholds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腹部呼吸运动校正 T1 映像。
研究目的本研究的目的是探讨一种可进行自由呼吸数据采集且扫描效率达 100% 的腹部运动校正 T1 地图绘制方法:使用连续的黄金径向轨迹和多个反转脉冲采集数据。为了校正呼吸运动,根据用于 T1 测绘的相同数据对代理运动进行了估计。基于图像的自导航允许对呼吸分辨图像进行分选和重建,这些图像用于呼吸运动场的估计。最后,应用估计的运动场从数据中计算出运动校正 T1 图。该方法在五名健康志愿者身上进行了评估。为了评估基于图像的导航仪,我们将其与同时获取的超宽带雷达信号进行了比较。对不同扫描时间的运动校正 T1 图进行了定性和定量评估:与未校正的 T1 地图相比,所有志愿者的运动校正 T1 地图显示肝脏的运动伪影更少,肾脏结构和血管更清晰。此外,就感兴趣区的平均值而言,与参考屏气 T1 地图的相对误差可从未经校正的 T1 地图的高达 25% 减少到运动校正地图的 10%以下,而扫描时间可减少到 6-8 秒:所提出的方法可在腹部进行呼吸运动校正 T1 地图绘制,并确保绘制精确的 T1 地图,而无需任何呼吸暂停。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
期刊最新文献
Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts. FeCl3 and GdCl3 solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis. Correction to: Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. PyFaceWipe: a new defacing tool for almost any MRI contrast.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1