Thomas Belcher, Loïc Coutte, Anne-Sophie Debrie, Valentin Sencio, François Trottein, Camille Locht, Stephane Cauchi
{"title":"Pertussis toxin-dependent and -independent protection by Bordetella pertussis against influenza.","authors":"Thomas Belcher, Loïc Coutte, Anne-Sophie Debrie, Valentin Sencio, François Trottein, Camille Locht, Stephane Cauchi","doi":"10.1016/j.micinf.2024.105404","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial-viral co-infections are frequent, but their reciprocal effects are not well understood. Here, we examined the effect Bordetella pertussis infection and the role of pertussis toxin (PT) on influenza A virus (IAV) infection and disease. In C57BL/6J mice, prior nasal administration of virulent B. pertussis BPSM and PT-deficient BPRA provided effective and sustained protection from IAV-induced mortality. However, BPSM or BPRA administered together with purified PT (BPRA + PT) had a stronger protective effect on weight loss compared to BPRA alone, reduced the viral load, and induced IL-17A in the lungs. In IL-17<sup>-/-</sup> mice, BPSM- and BPRA + PT-mediated protection against viral replication was abolished, while BPSM, BPRA and BPRA + PT provided similar levels of protection against IAV-induced mortality and weight loss. In conclusion, B. pertussis infection protects against influenza by two mechanisms: one reducing viral replication depending on PT and IL-17, and the other, independently of PT and IL-17, resulting in protection against influenza disease without reducing the viral load.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micinf.2024.105404","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial-viral co-infections are frequent, but their reciprocal effects are not well understood. Here, we examined the effect Bordetella pertussis infection and the role of pertussis toxin (PT) on influenza A virus (IAV) infection and disease. In C57BL/6J mice, prior nasal administration of virulent B. pertussis BPSM and PT-deficient BPRA provided effective and sustained protection from IAV-induced mortality. However, BPSM or BPRA administered together with purified PT (BPRA + PT) had a stronger protective effect on weight loss compared to BPRA alone, reduced the viral load, and induced IL-17A in the lungs. In IL-17-/- mice, BPSM- and BPRA + PT-mediated protection against viral replication was abolished, while BPSM, BPRA and BPRA + PT provided similar levels of protection against IAV-induced mortality and weight loss. In conclusion, B. pertussis infection protects against influenza by two mechanisms: one reducing viral replication depending on PT and IL-17, and the other, independently of PT and IL-17, resulting in protection against influenza disease without reducing the viral load.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.