{"title":"Deguelin inhibits the glioblastoma progression through suppressing CCL2/NFκB signaling pathway","authors":"","doi":"10.1016/j.neuropharm.2024.110109","DOIUrl":null,"url":null,"abstract":"<div><p>Glioblastoma multiforme (GBM) is the most common primary intracranial tumor with characteristics of high aggressiveness and poor prognosis. Deguelin, a component from the bark of Leguminosae <em>Mundulea sericea</em> (African plant), displays antiproliferative effects in some tumors, however, the inhibitory effect and mechanism of deguelin on GBM were still poorly understood. At first, we found that deguelin reduced the viability of GBM cells by causing cell cycle arrest in G2/M phase and inducing their apoptosis. Secondly, deguelin inhibited the migration of GBM cells. Next, RNA-seq analysis identified that <em>CCL2</em> (encoding chemokine CCL2) was downregulated significantly in deguelin-treated GBM cells. As reported, CCL2 promoted the cell growth, and CCL2 was associated with regulating NFκB signaling pathway, as well as involved in modulating tumor microenvironment (TME). Furthermore, we found that deguelin inactivated CCL2/NFκB signaling pathway, and exougous CCL2 could rescue the anti-inhibitory effect of deguelin on GBM cells via upregulating NFκB. Finally, we established a syngeneic intracranial orthotopic GBM model and found that deguelin regressed the tumor growth, contributed to an anti-tumorigenic TME and inhibited angiogenesis of GBM by suppressing CCL2/NFκB <em>in vivo</em>. Taken together, these results suggest the anti-GBM effect of deguelin via inhibiting CCL2/NFκB pathway, which may provide a new strategy for the treatment of GBM.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824002788","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma multiforme (GBM) is the most common primary intracranial tumor with characteristics of high aggressiveness and poor prognosis. Deguelin, a component from the bark of Leguminosae Mundulea sericea (African plant), displays antiproliferative effects in some tumors, however, the inhibitory effect and mechanism of deguelin on GBM were still poorly understood. At first, we found that deguelin reduced the viability of GBM cells by causing cell cycle arrest in G2/M phase and inducing their apoptosis. Secondly, deguelin inhibited the migration of GBM cells. Next, RNA-seq analysis identified that CCL2 (encoding chemokine CCL2) was downregulated significantly in deguelin-treated GBM cells. As reported, CCL2 promoted the cell growth, and CCL2 was associated with regulating NFκB signaling pathway, as well as involved in modulating tumor microenvironment (TME). Furthermore, we found that deguelin inactivated CCL2/NFκB signaling pathway, and exougous CCL2 could rescue the anti-inhibitory effect of deguelin on GBM cells via upregulating NFκB. Finally, we established a syngeneic intracranial orthotopic GBM model and found that deguelin regressed the tumor growth, contributed to an anti-tumorigenic TME and inhibited angiogenesis of GBM by suppressing CCL2/NFκB in vivo. Taken together, these results suggest the anti-GBM effect of deguelin via inhibiting CCL2/NFκB pathway, which may provide a new strategy for the treatment of GBM.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).