Single-step purification and characterization of Pseudomonas aeruginosa azurin

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Protein expression and purification Pub Date : 2024-08-10 DOI:10.1016/j.pep.2024.106566
Petra Riegerová , Matej Horváth , Filip Šebesta , Jan Sýkora , Miroslav Šulc , Antonín Vlček
{"title":"Single-step purification and characterization of Pseudomonas aeruginosa azurin","authors":"Petra Riegerová ,&nbsp;Matej Horváth ,&nbsp;Filip Šebesta ,&nbsp;Jan Sýkora ,&nbsp;Miroslav Šulc ,&nbsp;Antonín Vlček","doi":"10.1016/j.pep.2024.106566","DOIUrl":null,"url":null,"abstract":"<div><p>Azurin is a small periplasmic blue copper protein found in bacterial strains such as <em>Pseudomonas</em> and <em>Alcaligenes</em> where it facilitates denitrification. Azurin is extensively studied for its ability to mediate electron-transfer processes, but it has also sparked interest of the pharmaceutical community as a potential antimicrobial or anticancer agent. Here we offer a novel approach for expression and single-step purification of azurin in <em>Escherichia coli</em> with high yields and optimal metalation. A fusion tag strategy using an N-terminal GST tag was employed to obtain pure protein without requiring any additional purification steps. After the on-column cleavage by HRV 3C Protease, azurin is collected and additionally incubated with copper sulphate to ensure sufficient metalation. UV-VIS absorption, mass spectroscopy, and circular dichroism analysis all validated the effective production of azurin, appropriate protein folding and the development of an active site with an associated cofactor. MD simulations verified that incorporation of the N-terminal GPLGS segment does not affect azurin structure. In addition, the biological activity of azurin was tested in HeLa cells.</p></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"224 ","pages":"Article 106566"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1046592824001384/pdfft?md5=8e6dd66b1b5f1cc9ef72519abe69efe9&pid=1-s2.0-S1046592824001384-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592824001384","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Azurin is a small periplasmic blue copper protein found in bacterial strains such as Pseudomonas and Alcaligenes where it facilitates denitrification. Azurin is extensively studied for its ability to mediate electron-transfer processes, but it has also sparked interest of the pharmaceutical community as a potential antimicrobial or anticancer agent. Here we offer a novel approach for expression and single-step purification of azurin in Escherichia coli with high yields and optimal metalation. A fusion tag strategy using an N-terminal GST tag was employed to obtain pure protein without requiring any additional purification steps. After the on-column cleavage by HRV 3C Protease, azurin is collected and additionally incubated with copper sulphate to ensure sufficient metalation. UV-VIS absorption, mass spectroscopy, and circular dichroism analysis all validated the effective production of azurin, appropriate protein folding and the development of an active site with an associated cofactor. MD simulations verified that incorporation of the N-terminal GPLGS segment does not affect azurin structure. In addition, the biological activity of azurin was tested in HeLa cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜绿假单胞菌 Azurin 的单步纯化和表征。
Azurin 是一种小型的外质蓝铜蛋白,存在于假单胞菌和钙化杆菌等细菌菌株中,可促进反硝化作用。人们对 Azurin 介导电子转移过程的能力进行了广泛研究,但它作为一种潜在的抗菌剂或抗癌剂也引起了制药界的兴趣。在这里,我们提供了一种在大肠杆菌中表达和一步纯化氮杂嘌呤的新方法,产量高且金属化效果最佳。我们采用了一种使用 N 端 GST 标签的融合标签策略,无需任何额外的纯化步骤即可获得纯蛋白。经 HRV 3C 蛋白酶柱上裂解后,收集氮杂嘌呤并与硫酸铜混合以确保充分的金属化。紫外-可见吸收、质谱和圆二色性分析都验证了氮杂环苷的有效生产、适当的蛋白质折叠以及活性位点与相关辅助因子的开发。MD 模拟验证了 N 端 GPLGS 片段的加入不会影响氮杂胰蛋白酶的结构。此外,还在 HeLa 细胞中测试了天青苷的生物活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein expression and purification
Protein expression and purification 生物-生化研究方法
CiteScore
3.70
自引率
6.20%
发文量
120
审稿时长
32 days
期刊介绍: Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.
期刊最新文献
Isolation and crystallization of copper resistance protein B (CopB) from Acinetobacter baumannii Efficient purification and excitation energy transfer characterization of phycoerythrin 545 from Rhodomonas sp. Expression and purification of the intact bacterial ergothioneine transporter EgtU Editorial Board Recombinant human FOXJ1 protein binds DNA, forms higher-order oligomers, has gel-shifting domains and contains intrinsically disordered regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1