Louise C. Evans , Brianna Dailey-Krempel , Mariana R. Lauar , Alex Dayton , Lucy Vulchanova , John W. Osborn
{"title":"Renal interoception in health and disease","authors":"Louise C. Evans , Brianna Dailey-Krempel , Mariana R. Lauar , Alex Dayton , Lucy Vulchanova , John W. Osborn","doi":"10.1016/j.autneu.2024.103208","DOIUrl":null,"url":null,"abstract":"<div><p>Catheter based renal denervation has recently been FDA approved for the treatment of hypertension. Traditionally, the anti-hypertensive effects of renal denervation have been attributed to the ablation of the efferent sympathetic renal nerves. In recent years the role of the afferent sensory renal nerves in the regulation of blood pressure has received increased attention. In addition, afferent renal denervation is associated with reductions in sympathetic nervous system activity. This suggests that reductions in sympathetic drive to organs other than the kidney may contribute to the non-renal beneficial effects observed in clinical trials of catheter based renal denervation. In this review we will provide an overview of the role of the afferent renal nerves in the regulation of renal function and the development of pathophysiologies, both renal and non-renal. We will also describe the central projections of the afferent renal nerves, to give context to the responses seen following their ablation and activation. Finally, we will discuss the emerging role of the kidney as an interoceptive organ. We will describe the potential role of the kidney in the regulation of interoceptive sensitivity and in this context, speculate on the possible pathological consequences of altered renal function.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"255 ","pages":"Article 103208"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic Neuroscience-Basic & Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566070224000626","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Catheter based renal denervation has recently been FDA approved for the treatment of hypertension. Traditionally, the anti-hypertensive effects of renal denervation have been attributed to the ablation of the efferent sympathetic renal nerves. In recent years the role of the afferent sensory renal nerves in the regulation of blood pressure has received increased attention. In addition, afferent renal denervation is associated with reductions in sympathetic nervous system activity. This suggests that reductions in sympathetic drive to organs other than the kidney may contribute to the non-renal beneficial effects observed in clinical trials of catheter based renal denervation. In this review we will provide an overview of the role of the afferent renal nerves in the regulation of renal function and the development of pathophysiologies, both renal and non-renal. We will also describe the central projections of the afferent renal nerves, to give context to the responses seen following their ablation and activation. Finally, we will discuss the emerging role of the kidney as an interoceptive organ. We will describe the potential role of the kidney in the regulation of interoceptive sensitivity and in this context, speculate on the possible pathological consequences of altered renal function.
期刊介绍:
This is an international journal with broad coverage of all aspects of the autonomic nervous system in man and animals. The main areas of interest include the innervation of blood vessels and viscera, autonomic ganglia, efferent and afferent autonomic pathways, and autonomic nuclei and pathways in the central nervous system.
The Editors will consider papers that deal with any aspect of the autonomic nervous system, including structure, physiology, pharmacology, biochemistry, development, evolution, ageing, behavioural aspects, integrative role and influence on emotional and physical states of the body. Interdisciplinary studies will be encouraged. Studies dealing with human pathology will be also welcome.