Bone Marrow Mesenchymal Stem Cells-Derived Extracellular Vesicle miR-208a-3p Alleviating Spinal Cord Injury via Regulating the Biological Function of Spinal Cord Neurons.
{"title":"Bone Marrow Mesenchymal Stem Cells-Derived Extracellular Vesicle miR-208a-3p Alleviating Spinal Cord Injury via Regulating the Biological Function of Spinal Cord Neurons.","authors":"Jianwei Yang, Yanhua Yao","doi":"10.1089/dna.2024.0064","DOIUrl":null,"url":null,"abstract":"<p><p>We aim to explore the potential mechanism of bone marrow mesenchymal stem cells-derived extracellular vesicles (BMSCs-Exo) in improving spinal cord injury (SCI). Thirty male 12-week specific pathogen-free (SPF) Sprague-Dawley (SD) rats were used to construct SCI model <i>in vivo</i>. Ten male 12-week SPF SD rats were used to extract BMSCs. The Basso, Beattie, Bresnahan (BBB) score was used to evaluate the motor function of rats. Real-time fluorescence quantitative PCR (RT-PCR), western blot (WB), and double luciferase assay were used to explore the regulation between rno-miR-208a-3p and Cdkn1a (p21) in BMSCs. Primary spinal cord neurons were treated with lipopolysaccharide (100 ng/mL) for 30 min to mimic SCI <i>in vitro</i>. Compared with the model group (14 scores), BMSCs-Exo increased BBB score (19 scores) in SCI rats. Compared with the sham group, Cdkn1a was upregulated, whereas rno-miR-208a-3p was downregulated in the model group. However, compared with the model group, Cdkn1a was downregulated, whereas rno-miR-208a-3p was upregulated in the BMSCs-Exo group. In addition, rno-miR-208a-3p inhibited the expression of Cdkn1a via direct binding way. BMSCs-Exo-rno-miR-208a-3p promoted the proliferation of primary spinal neurons via inhibiting apoptosis <i>in vitro</i>. Moreover, BMSCs-Exo-rno-miR-208a-3p promoted cyclin D1, CDK6, and Bcl-2 and inhibited Bax expression in a cell model of SCI. In conclusion, BMSCs-Exo-carried rno-miR-208a-3p significantly protects rats from SCI via regulating the Cdkn1a pathway.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"463-473"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/dna.2024.0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We aim to explore the potential mechanism of bone marrow mesenchymal stem cells-derived extracellular vesicles (BMSCs-Exo) in improving spinal cord injury (SCI). Thirty male 12-week specific pathogen-free (SPF) Sprague-Dawley (SD) rats were used to construct SCI model in vivo. Ten male 12-week SPF SD rats were used to extract BMSCs. The Basso, Beattie, Bresnahan (BBB) score was used to evaluate the motor function of rats. Real-time fluorescence quantitative PCR (RT-PCR), western blot (WB), and double luciferase assay were used to explore the regulation between rno-miR-208a-3p and Cdkn1a (p21) in BMSCs. Primary spinal cord neurons were treated with lipopolysaccharide (100 ng/mL) for 30 min to mimic SCI in vitro. Compared with the model group (14 scores), BMSCs-Exo increased BBB score (19 scores) in SCI rats. Compared with the sham group, Cdkn1a was upregulated, whereas rno-miR-208a-3p was downregulated in the model group. However, compared with the model group, Cdkn1a was downregulated, whereas rno-miR-208a-3p was upregulated in the BMSCs-Exo group. In addition, rno-miR-208a-3p inhibited the expression of Cdkn1a via direct binding way. BMSCs-Exo-rno-miR-208a-3p promoted the proliferation of primary spinal neurons via inhibiting apoptosis in vitro. Moreover, BMSCs-Exo-rno-miR-208a-3p promoted cyclin D1, CDK6, and Bcl-2 and inhibited Bax expression in a cell model of SCI. In conclusion, BMSCs-Exo-carried rno-miR-208a-3p significantly protects rats from SCI via regulating the Cdkn1a pathway.