Estimating wheat evapotranspiration through remote sensing utilizing GeeSEBAL and comparing with lysimetric data

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2024-08-12 DOI:10.1007/s13201-024-02248-6
Neda Baboli, Houshang Ghamarnia, Maryam Hafezparast Mavaddat
{"title":"Estimating wheat evapotranspiration through remote sensing utilizing GeeSEBAL and comparing with lysimetric data","authors":"Neda Baboli,&nbsp;Houshang Ghamarnia,&nbsp;Maryam Hafezparast Mavaddat","doi":"10.1007/s13201-024-02248-6","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate estimation of ET is vital for water resource management. In recent decades, researchers have focused on utilizing satellite imagery for this purpose. The use of RS data has enabled the development of new models that provide detailed spatial assessments. GeeSEBAL, an automated ET estimation tool, employs the SEBAL algorithm via GEE. The current version of GeeSEBAL utilizes Landsat images and ERA5 global reanalysis data to produce time series estimates. Landsat 8 images were processed into a 16-day time series spanning 2013–2022, specifically during the wheat growing season. To validate the GeeSEBAL model for 2013–2014, results were compared against lysimeter data. Subsequently, ET was calculated for the years 2015–2022. The evaluation of GeeSEBAL against lysimetric data, by metrics such as <i>R</i><sup>2</sup>, RMSE, MAE, NSE, and NRMSE, yielded values of 0.94, 0.98, 0.07, 0.86, and 0.62, respectively. Those findings underscore the importance of GeeSEBAL for estimating wheat ET in regions with limited data availability.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"14 9","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02248-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02248-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate estimation of ET is vital for water resource management. In recent decades, researchers have focused on utilizing satellite imagery for this purpose. The use of RS data has enabled the development of new models that provide detailed spatial assessments. GeeSEBAL, an automated ET estimation tool, employs the SEBAL algorithm via GEE. The current version of GeeSEBAL utilizes Landsat images and ERA5 global reanalysis data to produce time series estimates. Landsat 8 images were processed into a 16-day time series spanning 2013–2022, specifically during the wheat growing season. To validate the GeeSEBAL model for 2013–2014, results were compared against lysimeter data. Subsequently, ET was calculated for the years 2015–2022. The evaluation of GeeSEBAL against lysimetric data, by metrics such as R2, RMSE, MAE, NSE, and NRMSE, yielded values of 0.94, 0.98, 0.07, 0.86, and 0.62, respectively. Those findings underscore the importance of GeeSEBAL for estimating wheat ET in regions with limited data availability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 GeeSEBAL 遥感估算小麦蒸散量并与水分测定数据进行比较
准确估算蒸散发对水资源管理至关重要。近几十年来,研究人员主要利用卫星图像来实现这一目的。RS 数据的使用使得新模型的开发成为可能,从而提供详细的空间评估。自动蒸散发估算工具 GeeSEBAL 通过 GEE 采用了 SEBAL 算法。当前版本的 GeeSEBAL 利用大地遥感卫星图像和 ERA5 全球再分析数据进行时间序列估算。Landsat 8 图像被处理成跨度为 2013-2022 年的 16 天时间序列,特别是在小麦生长季节。为了验证 2013-2014 年的 GeeSEBAL 模型,将结果与浸透计数据进行了比较。随后,计算了 2015-2022 年的蒸散发。根据 R2、RMSE、MAE、NSE 和 NRMSE 等指标对 GeeSEBAL 与浸透仪数据进行评估后,得出的数值分别为 0.94、0.98、0.07、0.86 和 0.62。这些发现强调了 GeeSEBAL 在数据有限地区估算小麦蒸散发的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
A novel hybrid fuzzy analytical hierarchy process–game theory model for prioritizing factors affecting the deterioration of water pipelines Simulation of wheat water footprint using AquaCrop model under the climate change, case study in Qazvin plain An innovative approach for quality assessment and its contamination on surface water for drinking purpose in Mahanadi River Basin, Odisha of India, with the integration of BA-WQI, AHP-TOPSIS, FL-DWQI, MOORA, and RF methodology Identifying homogeneous hydrological zones for flood prediction using multivariable statistical methods and machine learning Controlling stormwater at the source: dawn of a new era in integrated water resources management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1