Hamdullah Ebrahimi, Amir Soltani Mohammadi, Saeed Boroomand Nasab, Naser Alamzadeh Ansari, Antonio Juárez-Maldonado
{"title":"Evaluation the impact of silicon nanoparticle on growth and water use efficiency of greenhouse tomato in drought stress condition","authors":"Hamdullah Ebrahimi, Amir Soltani Mohammadi, Saeed Boroomand Nasab, Naser Alamzadeh Ansari, Antonio Juárez-Maldonado","doi":"10.1007/s13201-024-02256-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study focused on the effect of silicon nanoparticles (Si-Nps) use on growth and water use efficiency (WUE) of tomato in hydroponic cultivation under drought stress. Experimental treatments included full irrigation, supplying 85 and 70% of crop water requirement (I<sub>100</sub>, I<sub>85</sub> and I<sub>70</sub>) and use of Si-Nps in three levels of 0, 50 and 100 ppm (N<sub>0</sub>, N<sub>50</sub> and N<sub>100</sub>) which was performed in a completely randomized design with three replications. Si-Nps were applied in two ways: leaf feeding (L) and root feeding (R). Data analysis showed that different levels of irrigation, Si-Nps and the interaction effect of theirs had a significant effect on fruit weight, leaf fresh and dry weight, stem fresh weight and WUE at 1% level. Si-Nps had a significant effect on stem dry weight at 1% and fruit sugar at 5%. The interaction effect of irrigation and Si-Nps had a significant effect on stem dry weight and fruit sugar at 1%. The maximum fresh fruit weight was related to treatment I<sub>85</sub>LN<sub>100</sub> and compared to the control treatment, it was 7.9% more. The maximum WUE was observed in I70RN50 treatment, which was 56.3% higher than control treatment. Generally, applying irrigation I<sub>70</sub>RN<sub>50</sub> gives the best result for hydroponic tomato cultivation in greenhouse conditions.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"14 9","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02256-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02256-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study focused on the effect of silicon nanoparticles (Si-Nps) use on growth and water use efficiency (WUE) of tomato in hydroponic cultivation under drought stress. Experimental treatments included full irrigation, supplying 85 and 70% of crop water requirement (I100, I85 and I70) and use of Si-Nps in three levels of 0, 50 and 100 ppm (N0, N50 and N100) which was performed in a completely randomized design with three replications. Si-Nps were applied in two ways: leaf feeding (L) and root feeding (R). Data analysis showed that different levels of irrigation, Si-Nps and the interaction effect of theirs had a significant effect on fruit weight, leaf fresh and dry weight, stem fresh weight and WUE at 1% level. Si-Nps had a significant effect on stem dry weight at 1% and fruit sugar at 5%. The interaction effect of irrigation and Si-Nps had a significant effect on stem dry weight and fruit sugar at 1%. The maximum fresh fruit weight was related to treatment I85LN100 and compared to the control treatment, it was 7.9% more. The maximum WUE was observed in I70RN50 treatment, which was 56.3% higher than control treatment. Generally, applying irrigation I70RN50 gives the best result for hydroponic tomato cultivation in greenhouse conditions.