Epidemiological inferences from serological responses to cross-reacting pathogens

M. O'Driscoll, N. Hoze, N. Lefrancq, G. Ribeiro Dos Santos, D. Hoinard, M. Z. Rahman, K. K. Paul, A. M. Naser Titu, M. S. Alam, M. E. Hossain, J. Vanhomwegen, S. Cauchemez, E. S. Gurley, H. Salje
{"title":"Epidemiological inferences from serological responses to cross-reacting pathogens","authors":"M. O'Driscoll, N. Hoze, N. Lefrancq, G. Ribeiro Dos Santos, D. Hoinard, M. Z. Rahman, K. K. Paul, A. M. Naser Titu, M. S. Alam, M. E. Hossain, J. Vanhomwegen, S. Cauchemez, E. S. Gurley, H. Salje","doi":"10.1101/2024.08.12.24311852","DOIUrl":null,"url":null,"abstract":"Multiplex immunoassays are facilitating the parallel measurement of antibody responses against multiple antigenically-related pathogens, generating a wealth of high-dimensional data which depict complex antibody-antigen relationships. In this study we develop a generalizable analytical framework to maximize inferences from multi-pathogen serological studies. We fit the model to measurements of IgG antibody binding to 10 arboviral pathogens from a cross-sectional study in northwest Bangladesh with 1,453 participants. We used our framework to jointly infer the prevalence of each pathogen by location and age, as well as the levels of between-pathogen antibody cross-reactivity. We find evidence of endemic transmission of Japanese encephalitis virus as well as recent outbreaks of dengue and chikungunya viruses in this district. Our estimates of antibody cross-reactivity were highly consistent with phylogenetic distances inferred from genetic data. Further, we demonstrated how our framework can be used to identify the presence of circulating cross-reactive pathogens that were not directly tested for, representing a potential opportunity for the detection of novel emerging pathogens. The presented analytical framework will be applicable to the growing number of multi-pathogen studies and will help support the integration of serological testing into disease surveillance platforms.","PeriodicalId":18505,"journal":{"name":"medRxiv","volume":"10 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.12.24311852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiplex immunoassays are facilitating the parallel measurement of antibody responses against multiple antigenically-related pathogens, generating a wealth of high-dimensional data which depict complex antibody-antigen relationships. In this study we develop a generalizable analytical framework to maximize inferences from multi-pathogen serological studies. We fit the model to measurements of IgG antibody binding to 10 arboviral pathogens from a cross-sectional study in northwest Bangladesh with 1,453 participants. We used our framework to jointly infer the prevalence of each pathogen by location and age, as well as the levels of between-pathogen antibody cross-reactivity. We find evidence of endemic transmission of Japanese encephalitis virus as well as recent outbreaks of dengue and chikungunya viruses in this district. Our estimates of antibody cross-reactivity were highly consistent with phylogenetic distances inferred from genetic data. Further, we demonstrated how our framework can be used to identify the presence of circulating cross-reactive pathogens that were not directly tested for, representing a potential opportunity for the detection of novel emerging pathogens. The presented analytical framework will be applicable to the growing number of multi-pathogen studies and will help support the integration of serological testing into disease surveillance platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从对交叉反应病原体的血清反应推断流行病学
多重免疫测定有助于平行测定针对多种抗原相关病原体的抗体反应,产生大量高维数据,描述复杂的抗体抗原关系。在本研究中,我们建立了一个可通用的分析框架,以最大限度地从多种病原体血清学研究中得出推论。我们将该模型与孟加拉国西北部一项横断面研究中 10 种虫媒病毒病原体的 IgG 抗体结合测量值进行了拟合,这项研究有 1453 人参加。我们利用我们的框架共同推断了每种病原体在不同地区和年龄段的流行率,以及病原体间抗体交叉反应的水平。我们发现了日本脑炎病毒地方性传播的证据,以及该地区近期爆发的登革热和基孔肯雅病毒。我们对抗体交叉反应性的估计与遗传数据推断出的系统发育距离高度一致。此外,我们还展示了如何利用我们的框架来确定是否存在未经直接检测的交叉反应病原体,这为检测新出现的病原体提供了潜在的机会。所提出的分析框架将适用于越来越多的多病原体研究,并将有助于支持将血清学检测整合到疾病监测平台中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Factors determining hemoglobin levels in vaginally delivered term newborns at public hospitals in Lusaka, Zambia Accurate and cost-efficient whole genome sequencing of hepatitis B virus using Nanopore Mapping Epigenetic Gene Variant Dynamics: Comparative Analysis of Frequency, Functional Impact and Trait Associations in African and European Populations Assessing Population-level Accessibility to Medical College Hospitals in India: A Geospatial Modeling Study Targeted inference to identify drug repositioning candidates in the Danish health registries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1