TIDAL: Tool to Implement Developmental Analysis of Longitudinal data

A. Kwong, A. Edmondson-Stait, Eileen Xu, Ellen J. Thompson, Richard M. A. Parker, Ahmed Elhakeem, L. Romaniuk, Rebecca M. Pearson, Kate Tilling, Thalia C. Eley, McIntosh Andrew M, Heather C. Whalley
{"title":"TIDAL: Tool to Implement Developmental Analysis of Longitudinal data","authors":"A. Kwong, A. Edmondson-Stait, Eileen Xu, Ellen J. Thompson, Richard M. A. Parker, Ahmed Elhakeem, L. Romaniuk, Rebecca M. Pearson, Kate Tilling, Thalia C. Eley, McIntosh Andrew M, Heather C. Whalley","doi":"10.1101/2024.08.12.24311854","DOIUrl":null,"url":null,"abstract":"Motivation: Growth curve modelling is one method used to model trajectories of traits and behaviours over time. However, accessing, analysing and interpreting trajectories requires statistical expertise, thereby creating potential barriers for users to implement and understand longitudinal traits. TIDAL is a user-friendly research tool designed to facilitate trajectory modelling by improving access, analysis and interpretation of trajectory and longitudinal data. Implementation: TIDAL is available in two formats: an R package and an online Shiny application. The R package can be used offline, negating the need to upload potentially sensitive data. General features: TIDAL includes all the main steps of trajectory analysis including: 1) data preparation, (converting data from wide to long format); 2) data exploration, via basic plots and descriptive information; 3) analysis of trajectories using mixed effects modelling, interpretation of results, visualisation of trajectories, and extraction of key features (scores at different ages; area under the curve); and 4) interactions to derive population specific trajectories, combined with all the above. TIDAL is built with a simple graphical interface to guide users through each step. R syntax accompanies each step. Availability: Both versions of TIDAL can be found here: [https://tidal-modelling.github.io/].","PeriodicalId":18505,"journal":{"name":"medRxiv","volume":"10 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.12.24311854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Growth curve modelling is one method used to model trajectories of traits and behaviours over time. However, accessing, analysing and interpreting trajectories requires statistical expertise, thereby creating potential barriers for users to implement and understand longitudinal traits. TIDAL is a user-friendly research tool designed to facilitate trajectory modelling by improving access, analysis and interpretation of trajectory and longitudinal data. Implementation: TIDAL is available in two formats: an R package and an online Shiny application. The R package can be used offline, negating the need to upload potentially sensitive data. General features: TIDAL includes all the main steps of trajectory analysis including: 1) data preparation, (converting data from wide to long format); 2) data exploration, via basic plots and descriptive information; 3) analysis of trajectories using mixed effects modelling, interpretation of results, visualisation of trajectories, and extraction of key features (scores at different ages; area under the curve); and 4) interactions to derive population specific trajectories, combined with all the above. TIDAL is built with a simple graphical interface to guide users through each step. R syntax accompanies each step. Availability: Both versions of TIDAL can be found here: [https://tidal-modelling.github.io/].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TIDAL:实施纵向数据发展分析的工具
动机生长曲线建模是一种用于模拟特质和行为随时间变化的轨迹的方法。然而,获取、分析和解释轨迹需要统计方面的专业知识,从而给用户实施和理解纵向特征造成了潜在障碍。TIDAL 是一种用户友好型研究工具,旨在通过改进轨迹和纵向数据的访问、分析和解释,促进轨迹建模。实施:TIDAL 有两种格式:R 软件包和在线 Shiny 应用程序。R 软件包可以离线使用,无需上传潜在的敏感数据。一般功能:TIDAL 包含轨迹分析的所有主要步骤,包括1) 数据准备(将宽格式数据转换为长格式数据);2) 通过基本图和描述性信息探索数据;3) 使用混合效应模型分析轨迹、解释结果、轨迹可视化和提取关键特征(不同年龄的得分;曲线下面积);以及 4) 结合上述所有步骤,通过交互作用得出特定人群的轨迹。TIDAL 采用简单的图形界面来引导用户完成每个步骤。每个步骤都配有 R 语法。可用性:两个版本的 TIDAL 均可在此处找到:[https://tidal-modelling.github.io/].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Factors determining hemoglobin levels in vaginally delivered term newborns at public hospitals in Lusaka, Zambia Accurate and cost-efficient whole genome sequencing of hepatitis B virus using Nanopore Mapping Epigenetic Gene Variant Dynamics: Comparative Analysis of Frequency, Functional Impact and Trait Associations in African and European Populations Assessing Population-level Accessibility to Medical College Hospitals in India: A Geospatial Modeling Study Targeted inference to identify drug repositioning candidates in the Danish health registries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1