Optimizing Dilithium Implementation with AVX2/-512

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-10 DOI:10.1145/3687309
Runqing Xu, Debiao He, Min Luo, Cong Peng, Xiangyong Zeng
{"title":"Optimizing Dilithium Implementation with AVX2/-512","authors":"Runqing Xu, Debiao He, Min Luo, Cong Peng, Xiangyong Zeng","doi":"10.1145/3687309","DOIUrl":null,"url":null,"abstract":"Dilithium is a signature scheme that is currently being standardized to the Module-Lattice-Based Digital Signature Standard by NIST. It is believed to be secure even against attacks from large-scale quantum computers based on lattice problems. The implementation efficiency is important for promoting the migration of current cryptography algorithms to post-quantum cryptography algorithms. In this paper, we optimize the implementation of Dilithium with several new approaches proposed. Firstly, we improve the efficiency of parallel NTT implementations. The overhead of shuffling operations is reduced in our implementations, and fewer loading instructions are invoked for the precomputations. Then, we optimize the sampling and bit-packing of polynomial coefficients in Dilithium. We can handle double the number of coefficients within one register using a new approach for the sampling of secret key polynomials. The approaches proposed in this paper are applicable to implementations under AVX2 and AVX-512 instruction sets. Take Dilithium2 as an illustration, our AVX2 implementation demonstrates improvements of 22.7%, 16.9%, and 13.5% for KeyGen, Sign, and Verify compared to the previous implementation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Dilithium is a signature scheme that is currently being standardized to the Module-Lattice-Based Digital Signature Standard by NIST. It is believed to be secure even against attacks from large-scale quantum computers based on lattice problems. The implementation efficiency is important for promoting the migration of current cryptography algorithms to post-quantum cryptography algorithms. In this paper, we optimize the implementation of Dilithium with several new approaches proposed. Firstly, we improve the efficiency of parallel NTT implementations. The overhead of shuffling operations is reduced in our implementations, and fewer loading instructions are invoked for the precomputations. Then, we optimize the sampling and bit-packing of polynomial coefficients in Dilithium. We can handle double the number of coefficients within one register using a new approach for the sampling of secret key polynomials. The approaches proposed in this paper are applicable to implementations under AVX2 and AVX-512 instruction sets. Take Dilithium2 as an illustration, our AVX2 implementation demonstrates improvements of 22.7%, 16.9%, and 13.5% for KeyGen, Sign, and Verify compared to the previous implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 AVX2/-512 优化 Dilithium 实施
Dilithium 是一种签名方案,目前正被美国国家标准与技术研究院(NIST)标准化为基于模块晶格的数字签名标准。据信,即使面对来自基于晶格问题的大规模量子计算机的攻击,它也是安全的。实现效率对于促进当前加密算法向后量子加密算法的迁移非常重要。本文提出了几种新方法来优化 Dilithium 的实现。首先,我们提高了并行 NTT 实现的效率。在我们的实现中,洗牌操作的开销减少了,预计算所调用的加载指令也减少了。然后,我们优化了 Dilithium 中多项式系数的采样和位打包。我们使用一种新的密钥多项式采样方法,可以在一个寄存器内处理双倍数量的系数。本文提出的方法适用于 AVX2 和 AVX-512 指令集下的实现。以 Dilithium2 为例,与之前的实现相比,我们的 AVX2 实现在密钥生成、签名和验证方面分别提高了 22.7%、16.9% 和 13.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
A DNA Aptamer as a Chemical Tool to Modulate MEX3C-Mediated mRNA Destabilization. Digitally Customized 3D PCL/β-TCP Scaffold for Precise Reconstruction of Alveolar Crest Defects. Sensitive On-Site Detection of Antibiotic Resistance Genes in Aquatic Products by aPCR-LFA Leveraging AuNPs for Amplification Specificity and Hybrid Probes for Structural Control. A Biodegradable, Self-Gelling Protease-Grafted Alginate Dressing for Efficient Control of Non-Compressible Hemorrhage. Biomimetic Metal-Organic Framework Decorated by Artificial Bacterium-Binding Protein and Apamin for Treatment of Acute Enteritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1