Integrating feature importance techniques and causal inference to enhance early detection of heart disease

A. Arzanipour
{"title":"Integrating feature importance techniques and causal inference to enhance early detection of heart disease","authors":"A. Arzanipour","doi":"10.1101/2024.08.11.24311833","DOIUrl":null,"url":null,"abstract":"Heart disease remains a leading cause of mortality worldwide, necessitating robust methods for its early detection and intervention. This study employs a comprehensive approach to identify and analyze critical features contributing to heart disease. Using a dataset of 270 patients, three well-known feature importance techniques--Boruta, Information Gain, and Lasso Regression--are applied to determine the top five features for heart disease detection. Following the identification of these key features, the g-computation method, a causal inference technique, is utilized to explore the causal relationships between these features and the presence of heart disease. The findings provide valuable insights into not only the features that are highly correlated with chronic heart disease but also those that have a direct causal impact on the classification of patients. This integrated approach enhances the understanding of heart disease etiology and can inform more effective diagnostic and therapeutic strategies.","PeriodicalId":18505,"journal":{"name":"medRxiv","volume":"6 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.11.24311833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heart disease remains a leading cause of mortality worldwide, necessitating robust methods for its early detection and intervention. This study employs a comprehensive approach to identify and analyze critical features contributing to heart disease. Using a dataset of 270 patients, three well-known feature importance techniques--Boruta, Information Gain, and Lasso Regression--are applied to determine the top five features for heart disease detection. Following the identification of these key features, the g-computation method, a causal inference technique, is utilized to explore the causal relationships between these features and the presence of heart disease. The findings provide valuable insights into not only the features that are highly correlated with chronic heart disease but also those that have a direct causal impact on the classification of patients. This integrated approach enhances the understanding of heart disease etiology and can inform more effective diagnostic and therapeutic strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合特征重要性技术和因果推理,加强对心脏病的早期检测
心脏病仍然是导致全球死亡的主要原因,因此有必要采用强有力的方法对其进行早期检测和干预。本研究采用了一种综合方法来识别和分析导致心脏病的关键特征。利用 270 名患者的数据集,采用三种著名的特征重要性技术--Boruta、信息增益和拉索回归--来确定心脏病检测的五大特征。在确定了这些关键特征之后,利用g计算方法(一种因果推理技术)来探索这些特征与心脏病存在之间的因果关系。研究结果不仅提供了与慢性心脏病高度相关的特征,还提供了对患者分类有直接因果影响的特征的宝贵见解。这种综合方法加深了人们对心脏病病因的了解,并能为更有效的诊断和治疗策略提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Factors determining hemoglobin levels in vaginally delivered term newborns at public hospitals in Lusaka, Zambia Accurate and cost-efficient whole genome sequencing of hepatitis B virus using Nanopore Mapping Epigenetic Gene Variant Dynamics: Comparative Analysis of Frequency, Functional Impact and Trait Associations in African and European Populations Assessing Population-level Accessibility to Medical College Hospitals in India: A Geospatial Modeling Study Targeted inference to identify drug repositioning candidates in the Danish health registries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1