RAFT copolymerization of methyl methacrylate and di(ethylene glycol) methyl ether methacrylate in a hexylpyridinium ionic liquid

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-10 DOI:10.1002/jccs.202400197
Ludhovik Luiz Madrid, Ser John Lynon Perez, Susan Arco
{"title":"RAFT copolymerization of methyl methacrylate and di(ethylene glycol) methyl ether methacrylate in a hexylpyridinium ionic liquid","authors":"Ludhovik Luiz Madrid,&nbsp;Ser John Lynon Perez,&nbsp;Susan Arco","doi":"10.1002/jccs.202400197","DOIUrl":null,"url":null,"abstract":"<p>Smart polymers undergo significant physical or chemical changes in response to stimuli like temperature and pH. Achieving a narrow molecular weight distribution is crucial for their sensitivity. Reversible addition–fragmentation chain transfer (RAFT) in ionic liquids is an effective method for synthesizing such polymers due to its favorable kinetics and environmental benefits. Most studies use imidazolium ionic liquids, while pyridinium ionic liquids are less common despite their easy synthesis. This study reports the first successful RAFT copolymerization of di(ethylene glycol) methyl ether methacrylate (DEGMEMA) and methyl methacrylate in <i>N</i>-hexylpyridinium hexafluorophosphate ([HPY][PF<sub>6</sub>]). Both linear and hyperbranched copolymers (<i>M</i><sub><i>n</i></sub> &gt; 25,000) with narrow molecular weight distribution were synthesized, showing observable temperature responses and biocompatibility. The linear copolymers had a desirable dispersity (<i>Ð</i>) of less than 1.10, while the hyperbranched copolymer had a <i>Ð</i> of 2.034. The lower critical solution temperatures (LCSTs) of the copolymers were close to or below the LCST of PDEGMEMA (26°C). This study indicates that pyridinium ionic liquids can be explored as a suitable solvent for synthesizing methacrylate-based smart polymers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400197","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Smart polymers undergo significant physical or chemical changes in response to stimuli like temperature and pH. Achieving a narrow molecular weight distribution is crucial for their sensitivity. Reversible addition–fragmentation chain transfer (RAFT) in ionic liquids is an effective method for synthesizing such polymers due to its favorable kinetics and environmental benefits. Most studies use imidazolium ionic liquids, while pyridinium ionic liquids are less common despite their easy synthesis. This study reports the first successful RAFT copolymerization of di(ethylene glycol) methyl ether methacrylate (DEGMEMA) and methyl methacrylate in N-hexylpyridinium hexafluorophosphate ([HPY][PF6]). Both linear and hyperbranched copolymers (Mn > 25,000) with narrow molecular weight distribution were synthesized, showing observable temperature responses and biocompatibility. The linear copolymers had a desirable dispersity (Ð) of less than 1.10, while the hyperbranched copolymer had a Ð of 2.034. The lower critical solution temperatures (LCSTs) of the copolymers were close to or below the LCST of PDEGMEMA (26°C). This study indicates that pyridinium ionic liquids can be explored as a suitable solvent for synthesizing methacrylate-based smart polymers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲基丙烯酸甲酯和甲基丙烯酸二(乙二醇)甲醚在己基吡啶鎓离子液体中的 RAFT 共聚作用
智能聚合物在温度和 pH 值等刺激下会发生显著的物理或化学变化。实现窄分子量分布对其灵敏性至关重要。离子液体中的可逆加成-碎片链转移(RAFT)具有良好的动力学和环境效益,是合成此类聚合物的有效方法。大多数研究使用咪唑离子液体,而吡啶离子液体尽管易于合成,但并不常见。本研究首次成功报道了甲基丙烯酸二(乙二醇)甲醚(DEGMEMA)和甲基丙烯酸甲酯在 N-己基吡啶六氟磷酸盐([HPY][PF6])中的 RAFT 共聚。合成了分子量分布较窄的线性和超支化共聚物(Mn > 25,000),显示出明显的温度反应和生物相容性。线性共聚物的理想分散度 (Ð) 小于 1.10,而超支化共聚物的理想分散度 (Ð) 为 2.034。共聚物的低临界溶液温度(LCST)接近或低于 PDEGMEMA 的 LCST(26°C)。这项研究表明,吡啶离子液体可作为合成基于甲基丙烯酸酯的智能聚合物的合适溶剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1