Mustafa M. Hasaballah, Y. Tashkandy, O. S. Balogun, M. E. Bakr
{"title":"Bayesian inference for two populations of Lomax distribution under joint progressive Type‐II censoring schemes with engineering applications","authors":"Mustafa M. Hasaballah, Y. Tashkandy, O. S. Balogun, M. E. Bakr","doi":"10.1002/qre.3633","DOIUrl":null,"url":null,"abstract":"The joint progressive Type‐II censoring scheme is an advantageous cost‐saving strategy. In this paper, investigated classical and Bayesian methodologies for estimating the combined parameters of two distinct Lomax distributions employing the joint progressive Type‐II censoring scheme. Maximum likelihood estimators have been derived, and asymptotic confidence intervals are presented. Bayesian estimates and their corresponding credible intervals are calculated, incorporating both symmetry and asymmetry loss functions through the utilization of the Markov Chain Monte Carlo (MCMC) method. The simulation aspect has employed the MCMC approximation method. Furthermore, discussed the practical application of these methods, providing illustration through the analysis of a real dataset.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"3 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The joint progressive Type‐II censoring scheme is an advantageous cost‐saving strategy. In this paper, investigated classical and Bayesian methodologies for estimating the combined parameters of two distinct Lomax distributions employing the joint progressive Type‐II censoring scheme. Maximum likelihood estimators have been derived, and asymptotic confidence intervals are presented. Bayesian estimates and their corresponding credible intervals are calculated, incorporating both symmetry and asymmetry loss functions through the utilization of the Markov Chain Monte Carlo (MCMC) method. The simulation aspect has employed the MCMC approximation method. Furthermore, discussed the practical application of these methods, providing illustration through the analysis of a real dataset.
联合渐进式 II 型剔除方案是一种节约成本的有利策略。本文研究了采用联合渐进式 II 型剔除方案估算两个不同洛马克斯分布组合参数的经典方法和贝叶斯方法。推导出了最大似然估计值,并给出了渐近置信区间。通过使用马尔可夫链蒙特卡罗(MCMC)方法,结合对称和不对称损失函数,计算出贝叶斯估计值及其相应的可信区间。模拟方面采用了 MCMC 近似方法。此外,还讨论了这些方法的实际应用,并通过对真实数据集的分析进行了说明。
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.