Vision based Accident Detection System Using AI ML and Yolov8 Algorithms

Prof GAYATHRI R
{"title":"Vision based Accident Detection System Using AI ML and Yolov8 Algorithms","authors":"Prof GAYATHRI R","doi":"10.55041/ijsrem37033","DOIUrl":null,"url":null,"abstract":"There is a real danger of accidental discovery of safety and order. In this paper, we propose the use of YOLOv8 for accident-based vision, with embedded insights and machine learning State-of-the-art Acknowledgment Question Our algorithm communicates real-time flight video from the active camera to identify them accurately Classified and Accident. We demonstrate a comprehensive approach to improve YOLOv8 performance using data sets annotated with crash images. Through comparative analysis with existing methods, we confirm the uniqueness of our vision-based algorithm in terms of speed, accuracy, and performance. Our insights help improve accident management, provide appropriate planning to improve road safety, and potentially reduce the impact of accidents on the road. Index Terms— Road Accidents, Accident Detection, Computer Vision, Machine Learning, Deep Learning, CNN Classifier, Real- time Detection, Emergency Alerting, Intelligent Transportation Systems.","PeriodicalId":13661,"journal":{"name":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","volume":"7 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/ijsrem37033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is a real danger of accidental discovery of safety and order. In this paper, we propose the use of YOLOv8 for accident-based vision, with embedded insights and machine learning State-of-the-art Acknowledgment Question Our algorithm communicates real-time flight video from the active camera to identify them accurately Classified and Accident. We demonstrate a comprehensive approach to improve YOLOv8 performance using data sets annotated with crash images. Through comparative analysis with existing methods, we confirm the uniqueness of our vision-based algorithm in terms of speed, accuracy, and performance. Our insights help improve accident management, provide appropriate planning to improve road safety, and potentially reduce the impact of accidents on the road. Index Terms— Road Accidents, Accident Detection, Computer Vision, Machine Learning, Deep Learning, CNN Classifier, Real- time Detection, Emergency Alerting, Intelligent Transportation Systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用人工智能 ML 和 Yolov8 算法的基于视觉的事故检测系统
安全和秩序确实存在被意外发现的危险。在本文中,我们提出将 YOLOv8 用于基于事故的视觉,并嵌入了洞察力和机器学习 最先进的致谢问题 我们的算法传达了来自主动摄像头的实时飞行视频,以准确识别它们的分类和事故。我们展示了一种全面的方法,利用注释了碰撞图像的数据集来提高 YOLOv8 的性能。通过与现有方法的比较分析,我们证实了基于视觉的算法在速度、准确性和性能方面的独特性。我们的见解有助于改善事故管理,提供适当的规划以提高道路安全,并有可能减少事故对道路的影响。索引词条--道路事故、事故检测、计算机视觉、机器学习、深度学习、CNN 分类器、实时检测、紧急警报、智能交通系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse BANK TRANSACTION USING IRIS AND BIOMETRIC Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1