Artificial Intelligence in Early Detection: Identifying Breast Cancer Before Clinical Diagnosis

Prasurjya Saikia
{"title":"Artificial Intelligence in Early Detection: Identifying Breast Cancer Before Clinical Diagnosis","authors":"Prasurjya Saikia","doi":"10.55041/ijsrem37010","DOIUrl":null,"url":null,"abstract":"Improving patient outcomes depends critically on early identification of breast cancer. In order to detect breast cancer up to five years before a clinical diagnosis, artificial intelligence (AI) has the potential to completely transform breast cancer screening. This paper examines this possibility. We explore the most recent developments in AI algorithms and how they relate to imaging in medicine, namely mammography. The paper looks at how AI can identify precancerous alterations that are invisible to the human eye by analysing minute patterns in breast tissue. We go over the difficulties and possibilities in creating and evaluating AI models for early detection, including model interpretability, data quality, and ethical issues. The ultimate goal of this analysis is to demonstrate how artificial intelligence (AI) has the potential to drastically lower breast cancer mortality by enabling much earlier detection. Keywords-Artificial Intelligence, Breast Cancer, Personalized medicine,Digital Mammography","PeriodicalId":13661,"journal":{"name":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/ijsrem37010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improving patient outcomes depends critically on early identification of breast cancer. In order to detect breast cancer up to five years before a clinical diagnosis, artificial intelligence (AI) has the potential to completely transform breast cancer screening. This paper examines this possibility. We explore the most recent developments in AI algorithms and how they relate to imaging in medicine, namely mammography. The paper looks at how AI can identify precancerous alterations that are invisible to the human eye by analysing minute patterns in breast tissue. We go over the difficulties and possibilities in creating and evaluating AI models for early detection, including model interpretability, data quality, and ethical issues. The ultimate goal of this analysis is to demonstrate how artificial intelligence (AI) has the potential to drastically lower breast cancer mortality by enabling much earlier detection. Keywords-Artificial Intelligence, Breast Cancer, Personalized medicine,Digital Mammography
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在早期检测中的应用:在临床诊断前识别乳腺癌
改善患者的治疗效果关键取决于乳腺癌的早期识别。为了在临床诊断前五年发现乳腺癌,人工智能(AI)有可能彻底改变乳腺癌筛查。本文探讨了这种可能性。我们探讨了人工智能算法的最新发展,以及它们与医学成像(即乳腺 X 射线照相术)的关系。本文探讨了人工智能如何通过分析乳腺组织中的微小模式来识别肉眼无法看到的癌前病变。我们探讨了创建和评估用于早期检测的人工智能模型的困难和可能性,包括模型的可解释性、数据质量和伦理问题。这项分析的最终目的是展示人工智能(AI)如何通过实现更早的检测来大幅降低乳腺癌死亡率。关键词--人工智能、乳腺癌、个性化医疗、数字乳腺 X 射线照相术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse BANK TRANSACTION USING IRIS AND BIOMETRIC Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1