{"title":"The Ecosystem Ecology of Coral Reefs Revisited","authors":"Jacob E. Allgeier","doi":"10.1146/annurev-ecolsys-102722-124549","DOIUrl":null,"url":null,"abstract":"Early studies in coral reefs showed that simple measurements of ecosystem metabolism (primary production and ecosystem respiration) were useful for understanding complex reef dynamics at an ecosystem scale. These studies also helped establish the field of ecosystem ecology, but contemporary coral reef ecology has shifted away from these origins. In this manuscript, I describe the historical development of a theory of ecosystem metabolism that was foundational for the discipline of ecosystem ecology, and I update this theory to fully incorporate dynamics on coral reefs (and all ecosystems). I use this updated theory to (a) identify important controls on coral reef processes and (b) provide a rationale for patterns of coral reef carbon dynamics that allow me to generate hypotheses of coral reef ecosystem production. I then use existing data to broadly evaluate these hypotheses. My findings emphasize the importance of integrating measurements of ecosystem metabolism with current approaches to improve the development of theory and the efficacy of conservation and management of coral reefs.","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"81 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-ecolsys-102722-124549","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early studies in coral reefs showed that simple measurements of ecosystem metabolism (primary production and ecosystem respiration) were useful for understanding complex reef dynamics at an ecosystem scale. These studies also helped establish the field of ecosystem ecology, but contemporary coral reef ecology has shifted away from these origins. In this manuscript, I describe the historical development of a theory of ecosystem metabolism that was foundational for the discipline of ecosystem ecology, and I update this theory to fully incorporate dynamics on coral reefs (and all ecosystems). I use this updated theory to (a) identify important controls on coral reef processes and (b) provide a rationale for patterns of coral reef carbon dynamics that allow me to generate hypotheses of coral reef ecosystem production. I then use existing data to broadly evaluate these hypotheses. My findings emphasize the importance of integrating measurements of ecosystem metabolism with current approaches to improve the development of theory and the efficacy of conservation and management of coral reefs.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.