{"title":"Cancer genetics and deep learning applications for diagnosis, prognosis, and categorization","authors":"M. Sokouti, B. Sokouti","doi":"10.14440/jbm.2024.0016","DOIUrl":null,"url":null,"abstract":"Gene expression data are used to discover meaningful hidden information in gene datasets. Cancer and other disorders may be diagnosed based on differences in gene expression profiles, and this information can be gleaned by gene sequencing. Thanks to the tremendous power of artificial intelligence (AI), healthcare has become a significant user of deep learning (DL) for predicting cancer diseases and categorizing gene expression. Gene expression Microarrays have been proved effective in predicting cancer diseases and categorizing gene expression. Gene expression datasets contain only limited samples, but the features of cancer are diverse and complex. To overcome their dimensionality, gene expression datasets must be enhanced. By learning and analyzing features of input data, it is possible to extract features, as multidimensional arrays, from the data. Synthetic samples are needed to strengthen the range of information. DL strategies may be used when gene expression data are used to diagnose and classify cancer diseases.","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":"49 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2024.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gene expression data are used to discover meaningful hidden information in gene datasets. Cancer and other disorders may be diagnosed based on differences in gene expression profiles, and this information can be gleaned by gene sequencing. Thanks to the tremendous power of artificial intelligence (AI), healthcare has become a significant user of deep learning (DL) for predicting cancer diseases and categorizing gene expression. Gene expression Microarrays have been proved effective in predicting cancer diseases and categorizing gene expression. Gene expression datasets contain only limited samples, but the features of cancer are diverse and complex. To overcome their dimensionality, gene expression datasets must be enhanced. By learning and analyzing features of input data, it is possible to extract features, as multidimensional arrays, from the data. Synthetic samples are needed to strengthen the range of information. DL strategies may be used when gene expression data are used to diagnose and classify cancer diseases.