Real Time Hand Sign Language Translation: Text and Speech Conversion

Yasaswini M, Sanjay S 2, Lokesh U, Arun M. A
{"title":"Real Time Hand Sign Language Translation: Text and Speech Conversion","authors":"Yasaswini M, Sanjay S 2, Lokesh U, Arun M. A","doi":"10.55041/ijsrem36998","DOIUrl":null,"url":null,"abstract":"The Sign Language conversion project presents a real-time system that can interpret sign language from a live webcam feed. Leveraging the power of the Media pipe library for landmark detection, the project extracts vital information from each frame, including hand landmarks. The detected landmark coordinates are then collected and stored in a CSV file for further analysis. Using machine learning techniques, a Random Forest Classifier is trained on this landmark data to classify different sign language patterns. During the webcam feed processing, the trained model predicts the sign language class and its probability in real- time. The results are overlaid on the video stream, providing users with immediate insights into the subject's sign language cues. Key Words: Sign language recognition, Hand gesture recognition, Gesture-to-text conversion, Visual language processing.","PeriodicalId":13661,"journal":{"name":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/ijsrem36998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Sign Language conversion project presents a real-time system that can interpret sign language from a live webcam feed. Leveraging the power of the Media pipe library for landmark detection, the project extracts vital information from each frame, including hand landmarks. The detected landmark coordinates are then collected and stored in a CSV file for further analysis. Using machine learning techniques, a Random Forest Classifier is trained on this landmark data to classify different sign language patterns. During the webcam feed processing, the trained model predicts the sign language class and its probability in real- time. The results are overlaid on the video stream, providing users with immediate insights into the subject's sign language cues. Key Words: Sign language recognition, Hand gesture recognition, Gesture-to-text conversion, Visual language processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时手语翻译:文本和语音转换
手语转换项目展示了一个实时系统,该系统可从实时网络摄像头馈送中解读手语。该项目利用 Media pipe 库的地标检测功能,从每一帧图像中提取重要信息,包括手部地标。然后将检测到的地标坐标收集并存储到 CSV 文件中,以便进一步分析。利用机器学习技术,在这些地标数据上训练随机森林分类器,对不同的手语模式进行分类。在网络摄像头馈送处理过程中,经过训练的模型会实时预测手语类别及其概率。预测结果会叠加在视频流上,让用户即时了解被试的手语提示。关键字手语识别、手势识别、手势到文本转换、视觉语言处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse BANK TRANSACTION USING IRIS AND BIOMETRIC Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1