{"title":"An Efficient Anti-Noise Zeroing Neural Network for Time-Varying Matrix Inverse","authors":"Jiaxin Hu, Feixiang Yang, Yun Huang","doi":"10.3390/axioms13080540","DOIUrl":null,"url":null,"abstract":"The Time-Varying Matrix Inversion (TVMI) problem is integral to various fields in science and engineering. Countless studies have highlighted the effectiveness of Zeroing Neural Networks (ZNNs) as a dependable approach for addressing this challenge. To effectively solve the TVMI problem, this paper introduces a novel Efficient Anti-Noise Zeroing Neural Network (EANZNN). This model employs segmented time-varying parameters and double integral terms, where the segmented time-varying parameters can adaptively adjust over time, offering faster convergence speeds compared to fixed parameters. The double integral term enables the model to effectively handle the interference of constant noise, linear noise, and other noises. Using the Lyapunov approach, we theoretically analyze and show the convergence and robustness of the proposed EANZNN model. Experimental findings showcase that in scenarios involving linear, constant noise and noise-free environments, the EANZNN model exhibits superior performance compared to traditional models like the Double Integral-Enhanced ZNN (DIEZNN) and the Parameter-Changing ZNN (PCZNN). It demonstrates faster convergence and better resistance to interference, affirming its efficacy in addressing TVMI problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13080540","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Time-Varying Matrix Inversion (TVMI) problem is integral to various fields in science and engineering. Countless studies have highlighted the effectiveness of Zeroing Neural Networks (ZNNs) as a dependable approach for addressing this challenge. To effectively solve the TVMI problem, this paper introduces a novel Efficient Anti-Noise Zeroing Neural Network (EANZNN). This model employs segmented time-varying parameters and double integral terms, where the segmented time-varying parameters can adaptively adjust over time, offering faster convergence speeds compared to fixed parameters. The double integral term enables the model to effectively handle the interference of constant noise, linear noise, and other noises. Using the Lyapunov approach, we theoretically analyze and show the convergence and robustness of the proposed EANZNN model. Experimental findings showcase that in scenarios involving linear, constant noise and noise-free environments, the EANZNN model exhibits superior performance compared to traditional models like the Double Integral-Enhanced ZNN (DIEZNN) and the Parameter-Changing ZNN (PCZNN). It demonstrates faster convergence and better resistance to interference, affirming its efficacy in addressing TVMI problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.