Response surface methodology-based preparation of sago starch bioplastic film for food packaging

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE International Journal of Polymer Analysis and Characterization Pub Date : 2024-10-02 DOI:10.1080/1023666X.2024.2383480
Shikha Guleria , Harpreet Singh , Atul Jain , Shailendra Kumar Arya , Sanjeev Puri , Madhu Khatri
{"title":"Response surface methodology-based preparation of sago starch bioplastic film for food packaging","authors":"Shikha Guleria ,&nbsp;Harpreet Singh ,&nbsp;Atul Jain ,&nbsp;Shailendra Kumar Arya ,&nbsp;Sanjeev Puri ,&nbsp;Madhu Khatri","doi":"10.1080/1023666X.2024.2383480","DOIUrl":null,"url":null,"abstract":"<div><div>The increase in the use of plastics during the past few decades has caused environmental pollution due to the non-biodegradable and recalcitrance nature of the plastics. This has caused great problems for the solid waste management efforts. The development of biodegradable polymers from natural and renewable ingredients can address the challenges caused by plastic pollution. The present work deals with the optimization of the preparation process of sago starch-based biodegradable bioplastic films. The sago starch, glycerol-sorbitol mixture, and chitosan were used as polysaccharides, plasticizers, and antimicrobial agents, respectively. The factors screening and design optimization were performed using response surface methodology and Box-Behnken Design to investigate the interactions between all components in the film preparation. Furthermore, the developed bioplastic films were characterized through field emission scanning electron microscopy and Fourier transform infrared spectroscopy. The antimicrobial susceptibility assay showed the inhibition of the growth of <em>Bacillus pumilus</em> and <em>Alcaligenes faecalis XF1</em> by incorporation of cinnamon essential oil into the film. Moreover, the developed films successfully reduced the proliferation of fungal growth on packaged bread samples. The microbial analysis found that the shelf life of the wheat bread was improved from 3 to 15 days. The sago starch bioplastic films developed in this study can potentially meet the requirements for food packaging films.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 7","pages":"Pages 478-495"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000349","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in the use of plastics during the past few decades has caused environmental pollution due to the non-biodegradable and recalcitrance nature of the plastics. This has caused great problems for the solid waste management efforts. The development of biodegradable polymers from natural and renewable ingredients can address the challenges caused by plastic pollution. The present work deals with the optimization of the preparation process of sago starch-based biodegradable bioplastic films. The sago starch, glycerol-sorbitol mixture, and chitosan were used as polysaccharides, plasticizers, and antimicrobial agents, respectively. The factors screening and design optimization were performed using response surface methodology and Box-Behnken Design to investigate the interactions between all components in the film preparation. Furthermore, the developed bioplastic films were characterized through field emission scanning electron microscopy and Fourier transform infrared spectroscopy. The antimicrobial susceptibility assay showed the inhibition of the growth of Bacillus pumilus and Alcaligenes faecalis XF1 by incorporation of cinnamon essential oil into the film. Moreover, the developed films successfully reduced the proliferation of fungal growth on packaged bread samples. The microbial analysis found that the shelf life of the wheat bread was improved from 3 to 15 days. The sago starch bioplastic films developed in this study can potentially meet the requirements for food packaging films.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于响应面方法制备食品包装用西米淀粉生物塑料薄膜
由于塑料具有不可生物降解和难降解的特性,过去几十年中塑料使用量的增加造成了环境污染。这给固体废物管理工作带来了很大的问题。利用天然和可再生成分开发生物可降解聚合物可以解决塑料污染带来的挑战。本研究涉及西米淀粉基生物可降解生物塑料薄膜制备工艺的优化。西米淀粉、甘油-山梨醇混合物和壳聚糖分别用作多糖、增塑剂和抗菌剂。采用响应面法和箱-贝肯设计法进行了因素筛选和优化设计,以研究制备薄膜过程中所有成分之间的相互作用。此外,还通过场发射扫描电子显微镜和傅立叶变换红外光谱对所制备的生物塑料薄膜进行了表征。抗菌药敏试验表明,在薄膜中加入肉桂精油可抑制枯草芽孢杆菌和粪肠球菌 XF1 的生长。此外,开发的薄膜还成功地减少了包装面包样品上真菌的增殖。微生物分析发现,小麦面包的保质期从 3 天延长到了 15 天。本研究开发的西米淀粉生物塑料薄膜有可能满足食品包装薄膜的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
37
审稿时长
1.6 months
期刊介绍: The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization: Characterization and analysis of new and existing polymers and polymeric-based materials. Design and evaluation of analytical instrumentation and physical testing equipment. Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution. Using separation, spectroscopic, and scattering techniques. Surface characterization of polymeric materials. Measurement of solution and bulk properties and behavior of polymers. Studies involving structure-property-processing relationships, and polymer aging. Analysis of oligomeric materials. Analysis of polymer additives and decomposition products.
期刊最新文献
Synthesis, rheological and thermal studies of Gum ghatti-cl-poly(acrylic acid) hydrogels containing CoFe2O4 nanoparticles Preparation and characterization of fumed silica added PMMA denture base materials High-performance biodegradable triboelectric nanogenerators using CoFe2O4 filled poly (butylene adipate-co-terephthalate) Optimization of Yucca filamentosa fiber based graft copolymer through response surface methodology and evaluation of physico-chemical properties Mechanical, Thermal, and Water Absorption Behavior of Ash Gourd (Benincasa Hispida) Peel Particles Filled Epoxy Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1